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Abstract—Stick exercises, which have been attracting attention
for improving the health of the elderly, are usually performed
in nursing homes under the guidance of nursing staff. However,
in the current pandemic in which the elderly are advised to
refrain from going out unnecessarily, it is desirable for each
individual to be able to perform the stick exercises alone. In
this study, we aim to develop a stick exercise support system
that can automatically record the number of times an elderly
person performs each type of stick exercise and provide feedback
to improve the movement for each exercise. As a first step
toward the realization of this stick exercise support system,
we investigated a method for recognizing exercise movements
using inertial measurement unit (IMU) sensors. In the evaluation
experiment, 21 subjects performed 3 sets (10 times per set) of
eight basic stick exercises. The exercise movements were classified
based on the linear acceleration and quaternion data obtained
from the IMU. As a result, 90 % of F-measure was achieved
when using LightGBM as the learning algorithm.

Index Terms—Activity recognition; Stick exercises; Health
promotion; Machine Learning

I. INTRODUCTION

Falls in the elderly often result in significant trauma, such
as bone fractures, that require hospitalization and are not
uncommonly followed by the victim becoming bedridden.
Therefore, it is important to prevent such falls through daily
moderate exercise. In recent years, stick exercises, which are
easy to perform, have been attracting attention as a means to
prevent falls and improve the health of the elderly [1]. Stick
exercises are usually performed in nursing homes under the
guidance of nursing staff. However, in the current pandemic
situation in which it is advisable to refrain from going out
unnecessarily, it is desirable for each individual to be able to
perform the stick exercises by himself or herself. A system that
can automatically record the number of times he or she has
performed each stick exercise at home is therefore required.

Shen et al. developed MiLift, which can track workouts
such as aerobic exercises and weightlifting with high accuracy
using a smartwatch [2]. Takada et al. investigated the recog-
nition accuracy of 10 different exercises for each wearable
sensor position with a focus on body weight training without
equipment [3]. 93.5% recognition accuracy was achieved

when the sensors were placed at both the wrist and waist.
In both of these studies, inertial measurement unit (IMU)
sensors were attached to the body to realize highly accurate
motion recognition, but the application of this method to stick
exercises, which forms the focus of this study, has not yet been
investigated.

In this study, we investigate an approach for identifying
the stick exercises performed by a user in which an IMU
sensor is attached to the stick used for the stick exercises.
To evaluate the proposed method, we constructed a dataset
consisting of sensor data collected from 21 experimental
subjects performing three sets (10 times per set) of eight basic
stick exercises (boutaisou). In the evaluation experiment, we
evaluated the performance of the proposed method using the
above dataset and confirmed that the proposed method can
identify the stick exercise with approximately 90% accuracy
in the leave-one-person-out scenario.

The remainder of this paper is organized as follows. In Sect.
2, we review the existing research related to the proposed
system. In Sect. 3, we describe the proposed method for
tracking stick exercises using an IMU sensor. In Sect. 4, we
describe our evaluation experiments and the results. Finally,
in Sect. 5, we conclude this paper and discuss future work.

II. RELATED RESEARCH

In this section, we describe the existing work on the related
fields of health support for the elderly and exercise support.

A. Research on health support for the elderly

Dobre et al. developed a system that enhances the delivery
of professional health care to the elderly through the provision
of non-intrusive monitoring and support [4].

Richard et al. proposed a health management system that
displays the temperature and heart rate data on a LCD and
sends automatic notifications to caregivers and doctors [5].
Susnea et al. proposed a method to monitor the behavior of
elderly people living alone and detect deviations from past
behavior patterns [6]. However, these studies did not propose
systems to encourage exercise in the elderly.



B. Research on exercise support

Voicu et al. proposed a human physical activity recognition
system based on data collected from smartphone sensors [7].
Relevant features from the six activities of walking, running,
sitting, standing, climbing, and descending are extracted by the
system. An evaluation of the collected data shows that most
of the activities could be recognized correctly, and an average
accuracy of 93% was achieved in four of them. The challenge
is to expand the scope of activities recognized to include other
activities such as riding a bicycle.

Kurban et al. proposed a daily activity recognition system
based on a 3-axis accelerometer that can be used in various
body positions [8]. In this study, data were collected from
the subjects as they performed walking, sitting, standing,
jumping, and falling motions. The proposed method achieved
an accuracy of up to 100% with an average accuracy of
96.54%.

Shen et al. developed MiLift, which can track workouts
such as aerobic exercise and weightlifting with high accuracy
using a smartwatch [2]. This system achieved more than
90% accuracy and repeatability in tracking both aerobic and
weightlifting exercises.

Takada et al. investigated the recognition accuracy for 10
types of body weight training exercises without any equipment
for each position of a wearable sensor [3].

Turmo et al. developed a system that supports the under-
standing, execution, and modification of a variety of exercises
for a wide range of subjects [9]. The system uses BodyLights,
which are 3D printed wearable optomechanical devices that
can be placed at critical body parts and inside equipment.
These devices project laser crosses based on the wearer’s
movements to help correct 18 targeted exercises.

Torigoe et al. focused on kendo, a representative martial arts
in Japan, and proposed a method for detecting and recognizing
striking motions through the use of IMUs to realize a support
system for improving the user’s kendo technique. To confirm
the effectiveness of the proposed method, they collected in-
ertial sensor data for the striking motions of subjects, who
included both experienced and inexperienced kendoka, using
four IMUs attached to the right wrist, waist, shinai tsuba,
and shinai tip leather and detected five striking motions based
on the dynamic time warping (DTW) distance obtained from
the acceleration time series data. The hitting motion could be
detected with 89.9% of F-measure [10]. The systems proposed
in these studies can be used to recognize the activities and
motor movements of elderly people. However, a system that
evaluates and improves the stick exercise movements in the
elderly by providing feedback has not yet been developed.
Therefore, we decided to develop such a system.

ITIT. STICK EXERCISE TRACKING SYSTEM

A. System overview

The goal of this study is to realize a stick exercise support
system that can provide feedback to elderly users during exer-
cises to improve their exercise movements using IMU sensors.
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Fig. 1. System overview

Figurel shows an overview of the proposed system. An IMU
sensor is attached to a stick to detect the exercise movement.
The system automatically classifies the type of exercise from
the linear acceleration and quaternion sensor data, evaluates
the exercise movements, and provides appropriate feedback. In
this study, we aim to recognize the exercise events performed
by the user as the first step toward the realization of the stick
exercise support system.

B. Exercises for recognition

Eight basic exercises were chosen as recognition targets
from the stick exercises introduced in [1] which are shown
in Figure 2 and explained below.

Exercise A: Stick straddling exercise

The exerciser holds the stick with both hands and
straddles the stick without bending it. Next, the
exerciser lifts his/ her hips off the chair and raises the
stick to the back of the waist. Finally, the exerciser
returns to his/her original position in reverse order.
The effect of this exercise is to increase the flexibility
of the legs and maintain the range of motion.

Exercise B: Stick lifting exercise

The exerciser holds the stick with both hands and
does the Banzai (holding up two hands) with a back
straight. He/she breathes and raises his/her shoulder
during the exercise. This exercise stretches the back
and helps prevent falling to the side.

Exercise C: Body twisting exercise

The exerciser stretches back and rotates the body to
the left and right while holding the stick with both
hands. Rotating the body helps improve the mobility
of the spinal column and thorax. Body rotation is
also a necessary element of getting back to one’s
feet after losing balance.

Exercise D: Sideways body tilting exercise

The exerciser holds the stick with both hands,
stretches back, and bends the body to the left and
right. This exercise helps increase the flexibility of
the rib cage.

Exercise E: Falling forward exercise

The exerciser holds the stick with both hands, leans
forward, and places the bar on the floor. By doing this
exercise, the exerciser experiences weight loading on
the sole of the foot and the forward leaning posture
necessary for standing up.
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a. Stick straddling exercise

b. Stick lifting exercise
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g. Receiving the stick behind
the back exercise

f. Shoulder twisting exercise

h. Stick turning with hands exercise

Fig. 2. 8 types of stick exercises

Fig. 3. IMU sensor used in the experiment

Exercise F: Shoulder twisting exercise
The exerciser holds a stick with both hands and
twist shoulders as if he/she were turning the stick
in front of body. Twisting the shoulders can increase
the mobility of the shoulders.

Exercise G: Receiving the stick behind the back exercise
The exerciser passes the stick behind his/her back
and receives it with the opposite hand. Manipulat-
ing the stick in an unseen location enhances body
movement imagery and increases shoulder mobility.

Exercise H: Stick turning with hands exercise
The exerciser holds the stick with both hands and
rotates it by moving the wrists up and down alter-
nately. This exercise can increase the mobility and
flexibility of the wrists.

Fig. 4. Smart stick used in the experiment.

C. Sensor devices used and mounting position

In this study, we used the MetaMotionR! shown in Figure 3
as the IMU sensor device to classify the exercise movements.
The IMU sensor can perform linear acceleration and quater-
nion measurements and has a recording rate of up to 100 Hz.
It can also collect the linear acceleration and quaternion data
wirelessly. The sensor is embedded in a hole in the center
of the stick, as shown in Figure 4. The exerciser performs the
exercise by holding both ends of the stick. Subjects performed
the exercises by holding both ends of a stick. The way and
angle of holding the sticks were adjusted so that all the subjects
had the same angle.

IV. EXPERIMENT

A. Experiment summary

To evaluate the effectiveness of the proposed method, we
conducted a data collection experiment with 21 male and
female subjects in their 20s. The linear acceleration and quater-
nion measurement data from the IMU sensor were collected
as the subjects performed three sets of each of the eight target

Thttps://mbientlab.com/metamotiont/



exercises (10 times per set) using the smart stick shown in
Figure 4.

B. Sensor waveforms

The measurement results for a single run are shown in
Figure 5. The figure shows the synthetic acceleration, which
is the sum of the accelerations in the x, y, and z axes
during each exercise, and the quaternion measurements. The
horizontal axis shows the time, and the vertical axis shows
the magnitude of the synthetic acceleration and quaternion
measurements. From the results of this run, it can be seen
that the synthetic acceleration of the straddling exercise (first
column from the left, first row from the top in Figure 5) does
not change significantly from the beginning to the end of the
exercise because the straddling exercise does not involve any
fast movements of the stick. The quaternion (second column
from the left, first row from the top in Figure 5) also shows
no significant changes in the w, X, y, and z components
possibly because there are no large movements of the stick.
The synthetic acceleration for the stick lifting exercise (third
column from the left, first row from the top in Figure 5) has
two periods of large acceleration, which we assume correspond
to the raising and lowering of the arms. The magnitudes of
the w and y components of the quaternion (fourth column
from the left, first row from the top in Figure 5) decrease
while the stick is being lifted. The synthetic acceleration
during the body twisting exercise (first column from the left,
second row from the top in Figure 5) shows a large overall
change. We believe that the large change is due to the large
and fast gymnastic movements involved in raising the stick
to chest height, twisting the body to the left and right, and
returning to the original position. The z component of the
quaternion (second column from the left, second row from
the top in Figure 5) is sometimes large and sometimes small
because of the twisting to the left and right. The synthetic
acceleration during the sideways body tilting exercise (third
column from the left, second row from the top in Figure
5) does not change significantly in general. This is because
although large movements are involved in this exercise, it is
difficult to move the body quickly. In the quaternion (fourth
column from the left, second row from the top in Figure 5),
there are times at which the x component decreases when the
z component increases and times at which the x component
increases when the z component decreases. This is thought to
be due to the larger changes in the z component when the
body is tilted to the left or right. The synthetic acceleration
during the falling forward exercise (first column from the left,
third row from the top of Figure 5) is generally small. This
is because this exerciser is only required to bring the stick
from knee height to foot height in a sitting position, so the
stick does not move very quickly. The y component in the
quaternion (second column from the left, third row from the
top in Figure 5) increases during the exercise after the arm is
lowered and returns to its original value when the arm returns
to its original position. The synthetic acceleration during the
shoulder-twisting exercise (third column from the left, third

row from the top in Figure 5) shows a large change from
the beginning to the end of the exercise. This is because
the exercise involves rapid movements in bringing the stick
from knee height to chest height at the beginning, twisting to
the left and right, and then returning the stick to the original
knee height. In the quaternion (fourth column from the left,
third row from the top in Figure 5), there are times at which
the x component decreases when the z component increases
and times at which the x component increases when the z
component decreases. This is thought to be due to the fact
that the change in the z component becomes larger when
the shoulder is twisted to the left or right. The synthetic
acceleration in the receiving the stick behind the back exercise
( first column from the left, fourth row from the top in
Figure 5) shows little overall change. This may be due to
the fact that because the exerciser cannot see the stick, the
exercise becomes difficult if the movements are too fast. The
y component of the quaternion (second column from the left,
fourth row from the top in Figure 5) rises at the beginning of
the exercise and returns to its original value at the completion
of the exercise because the stick is lowered with the left hand,
received with the right hand, and then returned to its original
position. The synthetic acceleration of the stick turning with
hands exercise (third row from the left, fourth column from
the top in Figure 5) has two sections with larger magnitudes
because the stick is rotated in two separate movements. The y
component in the quaternion (fourth column from the left in
Figure 5, fourth row from the top) is larger at some times and
smaller at others because it increases when the stick is first
rolled in on the left hand and decreases when it is rolled in
on the right hand.

C. Feature extraction

The feature values shown in Table 1 were calculated from
the linear acceleration and quaternion data acquired at a
sampling rate of 100 Hz from the IMU to build the machine
learning model. These features are namely, the mean, stan-
dard deviation, median absolute deviation, maximum value,
minimum value, sum of squares, entropy, quartile range,
fourth-order Burg autoregression coefficient, range between
minimum and maximum values, and the root mean square of
the time-domain signal, and the skewness, kurtosis, maximum
component, weighted average, spectral energy, frequency band
power spectrum spectral energy, and power spectral density of
the frequency-domain signals. These features were selected
because they have been shown to be effective in previous
studies on context estimation based mainly on inertial data
[10]-[12].

D. Performance evaluation

The performance of nine typical machine learning algo-
rithms, namely, the SVM artificial neural network (ANN),
random forest (RF), decision tree (DT), LightGBM logistic
regression (LR), k-nearest neighbor (KNN), naive Bayes (NB),
and extra-trees (ET), was evaluated using leave-one-person-out
cross-validation. Figure 6 shows a bar graph of the F-measure
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Fig. 5. Sensor waveform for each exercise

TABLE I
FEATURE LIST FOR SHORT STICK EXERCISE RECOGNITION
Function | Description [ Formula [ Type
means Arithmetic mean =% ZZ_ sl TF
stds Standard deviation o= \/ ¥ 2 i:l (si — 5)2 TF
mads Median absolute deviation median; (| s; — median;(s;) |) TF
maxs Largest values in array max;(s;) TF
mins Smallest value in array ming(s;) TF
energys Average sum of the squares % Zi\i 185 TF
entropys Signal entropy ZZN:1(C'L log(ci)),ci = si/ Zé\;l sj | TF
iqrs Interquartile range Q3(s) — Q1L(s) TF
autorregresions | 4th order Burg autoregression coefficients a = arburg(s,4),a € R? T
ranges Range between smallest and Largest values | maz;(s;) — mix;(s;) T
rmss Root square means \/%(s% +s2+. - +53) T
skewnesss Frequency signal skewness E[(£=2)3] F
Kkurtosiss Frequency signal kurtosis El(s — 5)7%/E[(s — 5)?]? F
maxFreqInds Largest frequency component argmaz;(s;) F
meanFreqs Frequency signal weighted average vazl (is3)/ Zjvzl sj F
energyBandsab | Spectral energy of a frequency band [a, b] a%l%l Z?:a 2 F
- T N 2
psds Power spectral density Freg Dim1 5 F

NSignal vector lengthQQuartileTTime domain features, FFrequency domain features.

achieved by the machine learning algorithms for each subject.
Using LightGBM resulted in the highest F-measure of 90.0%.
In comparison, Using NB resulted in the lowest F-measure of
52.4%. LightGBM achieved the highest F-measure because it
combines the decision tree algorithm with gradient boosting.
We can therefore conclude that LightGBM is an effective
machine learning algorithm for the proposed method. Figure
7 shows the confusion matrix obtained from the evaluation
of LightGBM, which achieved the highest F-measure. As
can be seen from the figure, the F-measure is, in general,

high. The F-measure of the stick straddling, stick lifting, body
twisting, sideways body tilting, and receiving the stick behind
the back exercises are about 90%, while those of the falling
forward and stick turning with hands exercises are about 80%,
which is a little lower than those of the other exercises. It
can therefore be concluded that the stick exercises performed
by the subject were recognized accurately most of the time.
However, there were a few cases in which the exercise was
not identified correctly, which may have resulted from the
individual differences between the exercise movements of the
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21 subjects asked to perform the stick exercises. We would
like to improve the proposed method in the future so that the
exercise movements can be recognized more accurately.

V. CONCLUSION

In this paper, we investigated a method for recognizing exer-
cise movements in the elderly and focused on stick exercises,
which have attracted attention for fall prevention and health
promotion in the elderly. To demonstrate the effectiveness of
the proposed method, we asked 21 subjects to perform three
sets of eight stick exercises (10 times per set). We classified the
exercise movements using linear acceleration and quaternion
data measured using an IMU sensor attached to the center
of the stick. The target exercise movements are eight basic
stick exercises comprising the stick straddling, stick lifting,
body twisting, sideways body tilting, falling forward, shoulder
twisting, receiving the stick behind the back, and stick turning
with hands exercises. The measurement data obtained from the
subjects were compared with laboratory data. The F-measure
of nine typical machine learning algorithms in classifying
the exercises based on the measurement data obtained from
the subjects was evaluated. We found that LightGBM can

recognize the eight stick exercises with an F-value that exceeds
90%. In the future, we will improve the proposed method by
increasing the number of subjects. In addition, we plan to
design feedback mechanisms to motivate habitual exercises
and improve their exercise skills based on the IoT data-driven
nudging concept [13].
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