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Abstract—In many of the world’s major cities, commuter trains
provide vital transportation support and thus play an essential
role in our daily lives. Therefore, it has become necessary to
estimate the degree of congestion in each train car, both to
improve passenger comfort levels and, more recently, to prevent
worsening the COVID-19 pandemic infection rate. However, it
is difficult to estimate the degree of congestion within a train
without violating passenger privacy. The same issues are true
for busses, which is noteworthy because we have previously
developed and evaluated a system that can estimate the degree
of congestion within a bus while protecting passenger privacy
by using Bluetooth Low Energy (BLE) signals. In this paper, we
report on our efforts to extend that system to railway use, which
were conducted on actual trains in cooperation with Kintetsu
Railway Co., Ltd. During this trial, we collected BLE signals
and used the data to estimate congestion levels in each car
using an ML regression model. The results show that the mean
absolute error (MAE) and the mean absolute percentage error
(MAPE) could be estimated at accuracy levels of 5.56 and 0.27,
respectively.

Index Terms—BLE, Train, Public transportation, Congestion
estimation, Machine learning

I. INTRODUCTION

In many of the world’s major cities, commuter trains
provide vital transportation support for commuters and thus
play an essential role in our daily lives. However, commuter
rush hours and weather-related passenger surges can cause
train congestion levels to rise past those where comfort is
compromised. Because of this, it is well known that many
passengers decide which train they will take based not only on
its on-time operation and fare but also on its comfort level [1].
Accordingly, train operators often collect and provide infor-
mation on congestion levels to prevent users from abandoning
trains due to their lack of comfort. Another factor requiring
consideration is the COVID-19 pandemic, which has been
ongoing since November 2019 and was still causing severe
economic, sanitary, and social problems for human society
as of December 2021 [2]. However, even though people are
striving to reduce contact with others to avoid spreading the
infection, they still use trains to sustain daily activities such as
commuting to work or shopping, so knowing train congestion

levels in advance will permit them to schedule journeys and
use trains with less risk of spreading the infection. This is a
particularly urgent problem since trains are among the most
widely used public transportation systems and tend to be the
most congested at specific times. Our research group has pre-
viously proposed a congestion Bluetooth Low Energy (BLE)
estimation system for local busses that protects passenger
privacy [3]. In this system, BLE signals from the mobile
devices of bus passengers are first detected, after which the
Bluetooth Device Address (BD Address) included in the BLE
signal, and the received signal strength indication (RSSI), are
processed. In our method, passenger numbers are defined as
the number of addresses satisfying the threshold value for the
obtained BLE signal RSSI and a dataset that combines BLE
data and bus-specific information. That study also discussed a
method for estimating passenger numbers on busses using a
machine learning (ML) model.

In this paper, we report on adapting the above system to
trains by estimating the degree of congestion in each train
car. To accomplish this, we first carried out a data collection
experiment on operational trains in cooperation with Kintetsu
Railway Co., during which the passenger numbers estimated
from the collected data showed a threshold-based estimation
result with a mean absolute error (MAE) and a mean absolute
percentage error (MAPE) of 7.27 and of 0.27, respectively.
In contrast, the ML-based estimation resulted in a MAE of
5.56 and a MAPE of 0.27. These results indicate that the
estimation accuracy levels improved for the car, especially at
high passenger levels.

The contributions of this research are as follows:

1) We constructed a device that collects BLE signals emitted
by passenger mobile terminals and collected BLE data on
actual trains in operation.

2) We constructed an ML-based model to estimate the
congestion in train car and found that the model was
sufficiently accurate for use in actual operation.



II. RELATED WORK

There are currently numerous research types and a wide va-
riety of different approaches to congestion estimates [4]–[12].
In this section, we introduce research on estimating passenger
numbers and BLE signal-based congestion estimations, both
of which are particularly relevant to our study.

A. Estimating passenger numbers

Camera-based systems have been proposed as the simplest
way to estimate passenger numbers [13]–[15]. For example,
Song et al.proposed a system that counts passenger numbers
using surveillance camera video footage [13]. However, their
camera-based estimation system records passenger faces and
thus could potentially be used to track individuals. This is
an important issue because it is not desirable for a public
transportation system, such as a train system, to routinely
collect information that may violate passenger privacy.

Several other studies have proposed using Wi-Fi signals
to estimate congestion levels [16]–[19]. For example, Handte
et al.proposed estimating passenger numbers on a Wi-Fi-
equipped bus by counting the number of passenger mobile
terminal media access control (MAC) addresses connected to
an access point. In this system, the error for of the estimated
number of passengers was 5.1, but the accuracy decreased
when the bus became crowded. In addition, estimating con-
gestion using Wi-Fi signals collects the MAC address for each
passenger, which may also be used to identify individuals.

Methods aimed at detecting passengers using infrared sen-
sors have also been proposed [20]–[24]. For example, to
detect passenger numbers at an airport, Bauer et al.proposed
combining an infrared sensor with a mat-type pressure sensor
[20]. However, infrared sensors count people by detecting
changes in signal intensity levels, so the estimation accuracy
of that system tends to be poor when people loiter near the
sensor or when a large number of people rapidly pass the
sensor. Such situations frequently occur in the case of trains
(e.g., leaning against the doorway, getting on and off a train
at stations), which means that infrared sensors are not suitable
for use under those conditions.

B. Estimating congestion using BLE signals

With the widespread use of smartphones, many studies
have proposed congestion-based estimation schemes using
wireless communication technologies such as BLE [25]–[29].
For example, Umeki et al.proposed a system to estimate the
congestion levels in sightseeing spots by focusing on RSSI
intensity levels, which vary significantly depending on the
number of people present [27]. In that study, they installed a
BLE signal broadcaster and a receiver at a sightseeing spot
and estimated the degree of congestion by observing and
evaluating the RSSI intensity distribution at three levels: ”low,”
”medium,” and ”high.”

Separately, Weppner et al.proposed a method for estimat-
ing crowd densities that works by aggregating the number
of mobile signals detected from nearby user-carried BLE
terminals moving in a monitored environment [28], [30].

Their method appropriately aggregates the data obtained from
user devices, and estimates crowd density levels without the
need to install new sensors. However, the above methods
require a mechanism to encourage user involvement since the
estimation accuracy depends primarily on the number of users
participating in the sensing process.

C. Positioning of this research

As described above, there are numerous studies on estimat-
ing passenger numbers, but only a few both ensure privacy
protection and can be practically used in transportation sys-
tems. In contrast, our research group has previously proposed a
BLE signal-based congestion estimation system for busses that
can more thoroughly protect passenger privacy [3]. Therefore,
this study extends the application of that system to trains and
reports on our attempt to estimate railway passenger numbers
without compromising their privacy.

III. DATA COLLECTION SYSTEM

A. System overview

A photograph of the sensing device used in our implemented
system is shown in Figure 1. As can be seen, the system is
implemented on a Raspberry Pi single-board computer and
consists of a Bluetooth dongle, a global positioning system
(GPS) module, and a network module to enable Long-Term
Evolution (LTE) communication.

1) Bluetooth dongle: To protect passenger privacy while
estimating congestion levels on public transport systems, our
system detects the BLE signals generated by passenger mobile
terminals. BLE is a power-saving communication standard
among Bluetooth-standard short-range wireless communica-
tion devices. When active, each BLE device continuously
broadcasts its availability data in an attempt to connect with
other BLE devices. The dongle attached to the system collects
BD addresses and RSSI signal strengths from the signals sent
by the passenger BLE devices in order to identify the devices.
However, since BD addresses change randomly at regular
intervals, passenger privacy is protected.

2) GPS module: To estimate the congestion level, it is
necessary to identify at which station sections the system has
collected BLE signals. In theory, since public transportation
systems operate according to established timetables, it is
possible to map BLE signals to the station sections using
the time information. However, as public transport is often
delayed by external factors such as weather and accidents,
it is challenging to identify BLE signals related to station
sections using only time information. Therefore, the system
uses a GPS module to obtain the train’s position, so that it
can map BLE signals to station sections even if the transport
service is delayed.

3) Network module: Since many public transportation sys-
tems do not have network access points like Wi-Fi in every car,
we use a network module that can be attached via a Universal
Serial Bus (USB) connector to monitor the system remotely
and collect real-time data.
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Fig. 2. Sensing process.

B. Assumption

The system collects the BLE signal, which requires the
passenger’s mobile device to turn on Bluetooth while moving.
However, Bluetooth is becoming more widespread with the
development of BLE devices such as wireless earphones and
smartwatches and contact tracing technology. We, therefore,
assume that the system can collect a sufficient number of BLE
signals to estimate the number of passengers.

C. Sensing process

In our system, we estimate passenger numbers on the
cars while the train moves from station to station(section) in
order to provide an indicator of their congestion levels. An
overview of the data sensing and labeling process is shown
in Figure 2, where it can be seen that the system detects
BLE signals from the surrounding area every 15 seconds and
sends that data to the data server. The sent data includes
timestamp, latitude, longitude, and BLE data collected from
several terminals (Figure 3). In our experiment, an investigator
carrying a sensing device boarded a car of an operating train
and manually recorded passenger numbers while the device
simultaneously collected sensing data (Table I).

1 {
2 "timestamp": 1628662870,
3 "lat": 34.693779,
4 "lng": 135.782786,
5 "ble": [
6 {
7 "addr": "72:12:4f:67:44:92",
8 "rssi": -54
9 },

10 {
11 "addr": "1a:b0:4f:e5:94:e4",
12 "rssi": -87
13 },
14 ],
15 }

Fig. 3. Scan data excerpt.

TABLE I
LABELING DATA EXCERPT.

Time Start End Type Order Num
15:13 Nara Shinomiya Local 3 33
15:15 Shinomiya Yamatosaidaiji Local 3 38
15:21 Yamatosaidaiji Gakuenmae Express 5 47
15:25 Gakuenmae Ikoma Express 5 49
15:32 Ikoma Ishikiri Express 5 38
15:36 Ishikiri Fuse Express 5 35

D. Feature extraction

Since the BLE data collected by the system in a single
scan may contain signals from terminals outside the car, we
aggregate all the data scanned in each station section and build
two features. First, we assume that the same BD address can
be detected multiple times within a station section when the
BLE terminal and system sensing device are in the same car.
Hence, the frequency F of signals generated by a single BD
terminal is calculated as follows:

F (%) =
ndetected

Nscan
× 100 (1)

where Nscan is the detection count in a station section and
ndetected is the number of times that the same BD address is
detected. In addition, the average of the RSSI Smean in station
sections is calculated as follows.

Smean =
1

ndetected

ndetected∑
i=1

S(i) (2)

where S(i) is the RSSI of the i-th detection in a station
section. Next, we adopt the BD address count above a certain
threshold as a station section feature, using the values obtained
by the above equations 1, 2.

IV. ESTIMATION AND EVALUATION

A. Experiment environment

We then collected BLE data on trains in operation using
the system described in station section III. More specifically,
we collected data from 381 station sections (with overlaps) in
Nara Prefecture. There were two restrictions to our actual train
experiment: (1) no power supply could be used for the sensing
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Fig. 4. Device and investigator location in the cars.

device, and (2) no sensing device could actually be installed
in the trains. As explained above, our investigators carried a
sensing device equipped with a mobile battery onto the car to
collect data while simultaneously visually checking passenger
numbers in order to obtain the actual passenger counts. This
experimental environment ensured that the sensing device was
located at the same position as the investigator who sat in the
middle of the car where its interior could be observed easily,
as shown in Figure 4.

B. Evaluation methodology

We estimate passenger numbers in each station section with
the data collected in the IV-A section. Two methods are used
for the estimation: one is based on the BLE signal threshold,
and the other is based on an ML regressor.

1) Threshold estimation: As described in the III-D sec-
tion, we calculate the average RSSI (Smean), and occurrence
frequency (F ) for all BD addresses detected in each station
section. Then, BD addresses above a particular value are set
as valid addresses, and the total number of these addresses is
set as the estimated value.

2) ML regressor estimation: Table II shows the ML features
used. Here, we consider the average RSSI or occurrence
frequency of a BD address to be essential indicators that
indicate the address is present in the car. Therefore, the number
of addresses at each incremental threshold is included in the
BLE features. We also include the number of scans in the
BLE features since the BD address count for each threshold
is considered to affect the number of scans a device performs
within a station section. Additionally, since information such
as train operation times and types: e.g., local, limited express,
or express, is considered vital for estimating congestion levels,
such as commuting rush hour traffic and transit times, infor-
mation specific to the train being observed is included in the
train features.

Next, we constructed a train dataset (TD) with BLE features
and a dataset containing all features (TD+) and then used them
to compare accuracy levels with and without train informa-
tion. Each model estimates passenger numbers in one station
section for these datasets using the Random Forest (RF) and
LightGBM (LGBM) regression models. The estimation results
were then evaluated by leave-one-out cross-validation, and the
Optuna Framework was used to adjust the hyperparameters of
each model [31].

TABLE II
FEATURE LIST.

Domain Feature

BLE BD address count 1

Number of scans

Train

Departure hour
Operation type

Station id
Order of cars

1 Threshold is set Smeans:-30
to -100 or higher，F :0 to
100or higher

TABLE III
RESULT OF THRESHOLD ESTIMATION.

Method MAE MAPE
ALL BD Addresses 283.98 13.67
Smean ≥ −50 9.29 0.33

Smean ≥ −55 ∩ F ≥ 40 7.27 0.27

C. Result

1) Threshold Estimation: First, we explain the results when
passenger numbers are defined by the total BD address count
obtained in each station section. The graph in Figure 5 plots
the total BD address count (Estimated value) and passenger
numbers (True value) on the vertical and horizontal axes,
respectively. Note that the blue line in the graph shows the
ideal state when there is no difference between the true
and estimated values. This graph shows that the total BD
address count is significantly larger than the actual number of
passengers. Accordingly, we then calculated the absolute error
between each station section’s true and estimated values and
then averaged them over the total number of station sections
to obtain the MAE and MAPE values, which were 283.98,
and 13.67, respectively (Table III).

Next, we describe the estimation results obtained by setting
thresholds for the average RSSI (Smean) and occurrence
frequency (F ) of BD addresses. Table III shows the MAE and
MAPE values when the appropriate thresholds are set, while
Figure 6 shows a graph plotting the true and estimated values
(number of valid BD addresses). Here, the threshold is set to
an empirical value. We also show a graph plotting the true
and estimated values for the number of valid BD addresses
in Figure 6. From Table III, it can be seen that estimating
passenger numbers with threshold results in smaller MAE and
MAPE values, and thus more accurate estimations. Compared
to Figure 5, it can be seen that the estimation is much closer
to the true value. In contrast, the estimation accuracy is low
in the station section where the true value is more than 50
people.

2) Estimating ML regressor estimation: Table IV shows
cross-validated MAE and MAPE values. Here, it can be seen
that the model with TD+ achieves the best performance, with
RF MAE and MAPE values of 5.85 and 0.28, respectively, and
LGBM MAE and MAPE values of 5.56, of 0.27, respectively.
The graph plotting the true and estimated values obtained by
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Fig. 5. Measured values (BD address counts) versus true values (passenger
counts) obtained from raw data.
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Fig. 6. Values estimated by LGBM (BD address count) versus true values
(passenger count).

LGBM using TD+ shown in Figure 7 references the feature
importance values in Figure 8. Here, it can be seen that the
occurrence frequency feature (add fre x) makes a particularly
important contribution to the estimation.
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Fig. 7. Values estimated by LGBM (number of BD addresses) versus true
values (number of passengers)

TABLE IV
PERFORMANCE OF EACH MODEL FOR EACH DATASET

TD TD+

Model MAE MAPE MAE MAPE
RF 5.96 0.28 5.85 0.28

LGBM 6.07 0.29 5.56 0.27
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Fig. 8. Feature importance value.

V. DISCUSSION

A. Estimation threshold

Figure 5 shows that the total BD address count detected
in the station section is much larger than the true value.
This may be due to the detection of BLE devices outside
the car and the fact that the BD address changes over time.
This indicates that by setting appropriate thresholds for the
average RSSI and the occurrence frequency of BLE signals,
we can significantly improve estimation accuracy levels, as
shown in Figure 6. On the other hand, as shown in Figure
6 (b), the estimated value is much lower than the true value
for the interval where the true value is more than 50 people.
This is believed to be due to the characteristics of BLE
signals, which are attenuated significantly when they encounter
obstructions. Therefore, in a crowded environment, the signals
are attenuated by human bodies, and it is assumed that the
signals from some terminals cannot be detected. In particular,
since the devices were situated near the center of the car
in our experiment, they experienced difficulties detecting the
terminals of passengers at the car ends.

B. ML regressor estimation

In this study, we improved the accuracy of the model by
including train-specific features in addition to the BLE-related
features used to estimate passenger numbers per car. The
cross-validation results show that the best-performing model
has a MAE of 5.56 and a MAPE of 0.27. Comparing the
results with the threshold estimation in Figure 6, it can be seen
that the accuracy of our model has been improved, especially
for the station section where the true value is greater than 50
individuals. The feature importance values in the model with



the best accuracy, shown in Figure 8, indicate that there are
high values related to relatively small frequency values of 10-
30%. When detecting BLE terminal signals, we found that
the device could detect the signal from a nearby terminal with
a high threshold while more distant terminal signals could
only be detected with low thresholds. Therefore, the small
frequency value is considered to have contributed significantly
to signal determination for distant terminals.

VI. CONCLUSION

This paper reports on the collection of BLE data from op-
erating trains as part of efforts to estimate passenger numbers
while protecting their privacy. To deal with the varying number
of devices in the train and passengers carrying multiple BLE
devices, we applied an estimation method that sets thresholds
for BLE data and uses an ML model to estimate passenger
numbers. The results show that passenger numbers can be
estimated with an MAE accuracy of about 5.56. Our future
work will include the collection of additional data. Our ex-
perimental environment only includes data from the hours
of 13:00 to 19:00, which do not include the morning rush
hour. Accordingly, it will be necessary to collect data under
various conditions in order to achieve a high level of accuracy
before our system can be put into practical use. We also
made careful efforts to protect the privacy of passengers by
using BLE addresses, which are better than video images for
producing congestion estimations. However, since a detailed
analysis of the addresses in the BLE data could be used to
identify individuals, it will be necessary to design a more
privacy-aware system that discards the addresses as soon as
the feature construction process has been completed.
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