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Abstract—In this paper, we present a point cloud streaming
method of real-space objects such as humans and animals for
real-time 3D reconstruction in VR space. The system uses a
depth camera to scan a human or animal, divides the point
cloud into parts of the body, and then controls the quality of the
point cloud (i.e., resolution and frame rate) for each part in real-
time according to the object’s motion and context. This enables
point cloud streaming with limited resources (computational
and network resources) and maximizes the user’s quality of
experience (QoE). We have implemented and evaluated a series
of systems incorporating the proposed method to enhance the
user experience in realistic environments and scenarios while
maintaining interactivity in VR-based online communication.
The results show that the proposed system is feasible under
resource-constrained environments without significantly affecting
the user’s QoE.

Index Terms—Real-time communication, 3D point cloud, QoE,
Streaming, VR

I. INTRODUCTION

In recent years, attention to the metaverse and digital twin
has increased, and how to incorporate real space situations into
virtual space has been actively discussed. However, because
real space is vast and complex, projecting it into the virtual
world is a difficult task. Especially the tourism field is one
of the most challenging use cases to virtualize because of the
importance of experiences and sensations in real space. In the
virtualization of tourist attractions, interactivity is essential to
recreate the interaction with local people and animals, so it is
ideal for sharing space in real-time between virtual and real
space. To achieve real-time spatial sharing, real space must
be quickly scanned and projected in 3D into virtual space.
3D Point cloud data streaming is one promising approach to
achieving this goal.

However, real-time streaming of 3D point cloud data has
resource limitations. The size of point cloud data is large,
and it is nearly impossible to stream the raw data on existing
mobile network infrastructure. For example, the point cloud
data generated by the Azure Kinect depth camera is approxi-
mately 430 MB/s (720P/15FPS), which requires bandwidth at
the Gbps level. Furthermore, there are all kinds of locations
and environments in real space, and not all of them necessarily

have high-quality infrastructure. In particular, in the field of
tourism, which is our premise, the use of cellular networks
and mobile devices which have limited resources is essential.
Therefore, there is a need for an efficient point cloud streaming
method with low bandwidth consumption while maintaining
the quality of the user experience [1].

There are many studies and approaches to point cloud
streaming, including point cloud data encoding/decoding,
tiling, and transmission optimization using view angle pre-
diction. For example, V-PCC which standardizes point cloud
compression like a video compression standard [2], a prototype
for real-time point cloud capture and streaming on mobile
devices [3], and a client-driven dynamic point cloud streaming
system based on DASH (Dynamic Adaptive Streaming over
HTTP) [4] have been proposed. However, most of these studies
focus on point cloud compression and preventing unnecessary
data transmission on a client basis. A few studies evaluate the
impact of these controls on user QoE [5]–[7].

In this paper, we propose an approach to extend point
cloud quality control to context-adaptive driving of objects
and to realize point cloud streaming on limited resources
while maintaining high QoE. In this paper, we describe the
implementation and evaluation results of the proposed system
and confirm that the system is capable of streaming point
clouds under cellular networks. The impact of the system’s
quality control on the user’s QoE is also investigated and
evaluated.

This paper introduces a system that enables remote users to
move freely within a space and interact with local people and
animals without needing fixed infrastructure, despite remote
participation, in situations such as tourism where experience
and sensation in real space are important. The system is built
around the use of mobile devices so that it can be used at
any tourist site or location and enables users to easily use and
participate in the system.

The main contributions of this paper are as follows:
• Dynamic control of point cloud quality based on objects

in real space is realized.
• A prototype system with real-time quality control under

resource limitation is implemented.



• The impact of point cloud quality control on users’ QoE
is evaluated.

II. RELATED WORK

This section describes existing research on XR collaboration
and point cloud streaming as related studies.

A. XR Collaboration

Lee et al. proposed an approach that divides the real space
into OOI (Object Of Interest) and AO (Ambient Object) and
combines pre-reconstruction of OOI and real-time reconstruc-
tion of AO [8]. They proposed an approach that combines
OOI pre-reconstruction and AO real-time reconstruction. For
OOI, the posture (position and direction) information in space
detected from the feature information of the object is shared
with the remote side to reconstruct the polygon model in real-
time. For AO, a point cloud masking the areas other than
OOI is generated and sent to the remote side, which is used
as a background during remote collaboration. WebSocket and
WebRTC were used to transmit the attitude information for
OOI and the point cloud information for AO, respectively.
Each of the information transfer methods is selected according
to the server load and data size. In addition, they show an
example of using a ball valve as an OOI, which is useful for
cases such as obtaining operating instructions from a remote
expert. They also propose a system that enables collaboration
between real physical space and virtual space with high
reproducibility, but the use cases are limited due to the process
of OOI recognition and pre-modeling.

B. Point cloud Streaming

High decoding complexity exists in point cloud compres-
sion, and Li et al. proposed an approach to solve this com-
plexity by transmitting uncompressed tiles of different quality
levels in addition to compressed tiles [6]. The system selects
an appropriate quality level for each tile that evenly divides
the point cloud and dynamically controls the trade-off be-
tween computational and communication resources. Although
uncompressed tiles consume more bandwidth, they do not
require decoding, thus reducing the amount of computation.
The authors also claim that the QoE can be optimized by
applying an approach that selects only tiles that exist within the
user’s FoV (Field of View) [9] , thereby reducing unnecessary
data transmissions, as well as by selecting the quality of the
tiles. They measured the QoE of this system and found that
it achieved a higher QoE value than the conventional method.
They also propose a method for allocating communication and
computational resources for point cloud video streaming and
show that it has superior performance compared to existing
methods. However, this method does not consider the quality
control of each detail of the target object according to the
movement and context of the object. Our system extends that
approach to dynamically control point cloud quality (that is,
resolution and frame rate) according to the object’s motion
and context.

III. SYSTEM REQUIREMENTS

We propose a system that enables remote and local users to
share space by scanning and transferring objects in real space
in real-time and reconstructing them in virtual space. In this
section, we describes the system’s prerequisites and associated
problems and also introduce our envisioned use cases.

A. Prerequisites

We assume that the system will be used in the field of
tourism. This is because tourism is one of the most difficult use
cases to virtualize because of the importance of experiences
and sensations in real space. We believe that remotely inter-
acting with people and animals in real space can be applied
to any situation. It is challenging since there are not many
studies targeting remote interactions with people and animals.

Several conditions are necessary to achieve the above goal.
There are two major problems: a high-speed network may not
be available, and using a fixed system is inappropriate.

First, let us discuss the problem related to high speed
network availability. Tourist destinations are widely scattered
from rural to urban areas and can be outdoors or indoors.
Therefore, we believe the proposed system must be widely
available in many locations. Hence, we assume the use of
cellular networks. According to data from NTT docomo, the
largest Japanese telecommunications carrier, effective cellu-
lar communication speeds in Japan from January to March
2022 are 137Mbps to 273Mbps for download and 17Mbps
to 39Mbps for upload, which are not as fast as fiber-optic
lines [10]. Therefore, we considered systems with these trans-
mission speeds in mind.

Next, we explain the problem that a fixed system is not
appropriate. We considered that a fixed installation of sensors
and processing equipment at the site would not be appropriate
from the standpoint of versatility. The reason for this is that
we assume that humans and animals are the target objects
when scanning objects in real space, but it is unlikely that
they will remain in the same place for a long period of time.
To extend the range of using the system, we concluded that
the system should be composed of mobile devices in the field.
From this condition, we consider that volunteers to handle
mobile devices are needed at the site. We assume that there
are volunteers at each tourist spot and that the system will be
realized with their cooperation.

B. Assumed Use Cases

We aim to make traveling and tourism more accessible by
reproducing the local tourist experience in a virtual space and
building a system from which travelers and locals can benefit.
The system is expected to be used as follows:

1) Volunteers with mobile terminals equipped with LiDAR
are at the target tourist sites.

2) The remote user moves freely within the virtual space
(provided in advance) corresponding to the sightseeing
spot and requests the projection of dynamic objects
(people, animals, etc.) in the real space included in
his/her field of view onto the virtual space.



3) Upon receiving a request, the volunteer scans the object
with the mobile device’s LiDAR and sends it to the
system.

4) The object is projected into the virtual space.
By placing a volunteer who scans objects between the

remote user and the local object, interaction with the local area
through the volunteer becomes possible. This enables users to
have an experience similar to that in real space when using
facilities or purchasing products. We believe these are potential
use cases in tourism and can also be applied to education,
training, and inspection tours.

C. Technical challenge

When the system is used in a mobile environment, various
problems arise. For example, network bandwidth and comput-
ing resources may be limited. To maximize QoE with limited
resources, factors that affect quality must be adjusted.

In this study, a depth camera is used to scan the target
object, but transmitting all the resulting point clouds in real-
time would exceed the available bandwidth. For example, the
Azure Kinect color point cloud stream uses approximately 430
MB/s bandwidth at 720P/15FPS, which cannot be transmitted
in real-time over cellular communication as described in Sect.
III-A. Compression of point cloud data is unacceptable in
a mobile environment, as it can cause FPS degradation and
delays, and non-delivery of other data. In addition, the larger
the number of points in the point cloud data, the more it will
affect the processing time, which may also lead to a decrease in
real-time performance. Therefore, even when sending selected
point cloud data according to the OOI (Object Of Interest), it
is ideal to be able to reduce the data to the extent that it does
not significantly affect the user’s QoE.

IV. PROPOSED SYSTEM

In this section, we describe the design of the system that
satisfies the requirements described in section III-A and its
components, such as hardware and functions.

A. Approach

To realize online tourism, it is necessary to convert real
space with various tourist objects into real-time data and
reconstruct it in virtual space. Still, it is difficult to acquire and
use all objects in real space in real-time due to computational
and network resources in mobile environments. Lee et al.
proposed an approach in which a portion of the real space
is cut out, and only the necessary objects are reflected in
real-time, while static data is used for the other objects [8].
We adopted this approach in our system, dividing the real
space into the objects that the remote participants wanted
to project and the surrounding objects that would serve as
their backgrounds. Fig. 1 shows this approach. The necessary
objects and the surrounding objects are called OOI (Object Of
Interest) and AO (Ambient Object), respectively.

In addition, we considered that using cameras and com-
munication infrastructure pre-installed at the site would be
inappropriate in terms of ubiquity and versatility. Since there
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Fig. 1. Our approach in streaming real space objects to virtual space

are countless tourist spots, the system must ultimately be
flexible enough to accommodate them. Therefore, we assumed
that volunteers would be present in the vicinity of the target
real space. That OOI point cloud scanning and transmission
would be conducted with their cooperation, using their mobile
terminals, such as smartphones and tablets. Under these con-
ditions, even when sending only OOI point clouds, there can
be delays that degrade the QoE in terms of communication
bandwidth and computational resources. Hence, we propose a
method to dynamically control the quality of the OOI point
cloud to keep the resources used under the limit. Unlike the
previous tiling approaches [6] divide the point cloud object
evenly, the proposed method recognizes the object’s attribute
and divides the point cloud at the body part scale to perform
finer-grained quality control of the object to maximize the user
experience while reducing bandwidth consumption.

B. System Design

Based on the proposed approach, targeting tourism appli-
cation, we propose a system that enables remote and local
users to share space by scanning and transferring objects
in real space and reconstructing them in virtual space in
real-time, without requiring fixed infrastructure. As shown in
Fig. 1, a volunteer at a sightseeing spot performs scanning and
data transmission of local objects (OOI) in the real space in
real-time at the request of a remote user. The real space is
reconstructed in the remote user’s virtual space by using the
transmitted point cloud data of the local objects (OOI) together
with the background data (AO) prepared in advance, thereby
sharing the space of the tourist site is realized.

To reduce bandwidth consumption of the point cloud data
(OOI) handled by the system, we propose a dynamic quality
control based on body part movements and incorporate it in the
system. Based on the techniques used in video compression
standards such as H.265 for 2D video and tiling approaches
for 3D point clouds, we reduce the total amount of point cloud
data by dynamically varying the resolution and frame rate of
each body part according to context: high frame rate/low res-
olution when the object part is moving significantly, and low
frame rate/high resolution when the part is nearly stationary.
Although the absolute quality of the point cloud data (OOI)
is lower than the raw data due to these processes, bandwidth
consumption is optimized by controlling the quality so as not
to affect the user’s QoE as much as possible.



C. Implementation
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Fig. 2. System Data Flow

The following is a description of the prototype system we
developed to evaluate the feasibility of the proposed system.
Fig. 2 shows a data flow of the system. The system is built
on ROS and uses Unity for 3D reconstruction.

First, we explain how to obtain the AO and OOI to recon-
struct the real space in a virtual environment. First, we obtain
the AO by using tools such as a 3D scanning application that
utilizes LiDAR installed in the iPhone, or a camera that can
capture 360-degree images. In recent years, 3D scanning of
various locations has been progressing, so scanning of AO
objects may not be necessary in the future.

Next, we describe the actual method of acquiring OOI
point clouds for transmission and real-time reconstruction. As
mentioned above, we assume that mobile devices will be used
to acquire the OOI point clouds. The depth and texture of
the OOI are continuously acquired using a depth camera and
treated as a color point cloud. Our system uses Azure Kinect
as well as iPhone for evaluation.

After scanning an OOI object, quality control is dynamically
performed according to its context. First, as shown in Fig. 2,
pose estimation is performed on the 2D color video input from
the camera to segment body parts and track their movement.
For the pose estimation, a trt-pose estimation model is used
for human pose estimation [11], [12], and a model trained by
DeepLabCut is used for animals (deer) pose estimation [13],
[14], as shown in Fig. 3.

Fig. 3. In case of animals: masks are generated from animal pose estimation
results to get a point cloud

Context-aware point cloud quality determination mecha-
nism: The quality of the point cloud is determined by the
value of the displacement of the corresponding body part. The
system constantly monitors the difference between the position
of the body part in the current frame and the previous frame.
When this difference exceeds a threshold value, the system

judges that the body part is moving and immediately reduces
the resolution to give priority to the frame rate. Conversely,
when the amount of movement of a body part remains below
the threshold value for several frames, the system determines
that the object is near stationary and gradually increases the
resolution (frame rate decreases).

The resolution of the point cloud is adjusted by resizing the
original input (color image, depth map: 720P) using nearest
neighbor completion (three steps: 25%, 50%, and 75%), and
the frame rate is switched by adjusting the transmission timing.
This process is performed for each body part. Table I shows
the bandwidth consumption of a sample human video sequence
when our system controls the quality. In this sample, the
bandwidth consumption (i.e., the maximum value) is 20.2
Mbps when all body parts are set to 75% quality, which
is within the possible transmission range with the existing
infrastructure.

The resulting point cloud data for each body part is then
sent to Unity as a ROS topic and reconstructed in 3D together
with the AO prepared in advance. To ensure water tightness
in the representation of the point cloud, the size of the points
is dynamically changed according to the quality of the point
cloud. The reconstructed tourist attraction space is presented
to the user through a VR-HMD.

V. EXPERIMENT

This section describes experiments conducted to evaluate
the impact of quality control on user QoE.

A. Outline of Experiment
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Evaluation
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Fig. 4. Quality Evaluation Experiment

A: 0.1 B: 0.25 C: 0.5 D: 0.75 E: 1.0

Fig. 5. Change in OOI due to Difference in Compression Ratio



TABLE I
SPECIFICATIONS OF POINT CLOUD QUALITY OUTPUT BY PROPOSED SYSTEM

Head Body Arms Legs All
25% 0.28Mbps (13FPS) 2Mbps (13FPS) 2.3Mbps (14FPS) 1.5Mbps (14FPS) 6.1Mbps
50% 0.9Mbps (12FPS) 5.5Mbps (9FPS) 6.1Mbps (9FPS) 4.8Mbps (12FPS) 17.3Mbps
75% 1.8Mbps (9FPS) 6.5Mbps (5FPS) 6.4Mbps (5FPS) 5.6Mbps (6.5FPS) 20.2Mbps

Processed Sequence

VR HMD

Fig. 6. Subjects wear VR HMD and view point clouds at 6DoF

Fig. 4 shows an overview of the QoE evaluation experiment.
In this experiment, we asked users to view several different
quality levels of output from a point cloud sequence that we
had prepared in advance for about 30 seconds and to rate the
quality of the output. The point cloud sequence consists of
three states: human standing (stationary), waving, and step-
ping. Each output stream is based on the input source (720P)
with compression ratios of rate = 0.1, 0.25, 0.5, 0.75, 1,
respectively (Condition A-E). The compression ratio here is
the ratio of the resize to the video input to the system.
Nearest neighbor interpolation was used to resize both color
and depth video (For rate=0.1, the quality is 10% of 720P, i.e.,
128x72).Fig. 5 is an example of point cloud display for each
compression ratio.

In addition to the above point cloud images, point cloud
images in which the quality was dynamically switched ac-
cording to the context of the object were also subject to
evaluation, resulting in a total of six patterns of point cloud
image evaluation (Condition F: Proposed system).

Fig. 6 shows a scene from the experiment. In this experi-
ment, a VR headset (HTC VIVE) was used to view contents
in a 3D space.

B. Evaluation Methodology

The evaluation method was based on the ACR (Absolute
Category Rating) method [15], which is one of the represen-
tative video quality evaluation methods. After viewing a 30-
second evaluation video, the experimental participants rated
the quality of the video within the following 10 seconds on a
5-point quality scale (5.very good, 4.good, 3.normal, 2.poor,
1.very poor).

Since there is an order effect in which the quality of the
images is affected by the quality of the previous images,
the order in which the evaluated images are presented is

TABLE II
SIGNIFICANT DIFFERENCES BY EACH POINT CLOUD SEQUENCE

Two pairs to compare P-value Significance

Smoothness

Compression A,F 0.008 !
Compression B,F 0.790
Compression C,F 0.002 !

Compression D,F 0.000 !

Compression E,F 0.000 !

Resolution

Compression A,F 0.001 !

Compression B,F 0.007 !
Compression C,F 0.244
Compression D,F 0.020 !

Compression E,F 0.001 !

Overall Quality

Compression A,F 0.046 !
Compression B,F 0.138
Compression C,F 0.129
Compression D,F 0.026 !

Compression E,F 0.012 !

randomized and varied for each participant in the experiment.
The three evaluation contents are as follows: (i) The quality
of the smoothness of the images, and (ii) Quality for the
denseness of the point cloud. (ii) Quality in terms of point
cloud density, (iii) Overall image quality.

The participants in the experiment were 15 undergraduate
and graduate students in their 20s. Each participant watched
six evaluation videos at random and rated them on a 5-point
scale immediately after watching each video.

C. Result

The quality evaluation results for each evaluation criterion
are shown in Fig. 7, Fig. 8, and Fig. 9. MOS was calculated
and visualized based on the evaluation results obtained from
the experiment participants. First, the Kruskal-Wallis test was
used for the results of each evaluation criterion. The test results
showed significant differences in smoothness, resolution, and
overall quality in all three experiments. (p-value: Smoothness:
8.94 × 10−12, Resolution: 1.14 × 10−9, Overall Quality:
1.45 × 10−2) Thereafter, the Mann-Whitney U-test is used
to compare the quality of each criterion result. Table II show
the test results. The results of the U-test on the smoothness
quality results showed that condition F (proposed method)
was not significantly different from condition B (compression
ratio of 0.25). This result shows that the proposed method
has the same level of smoothness as condition B. The results
of the U-test for resolution quality showed that condition F
(the proposed method) was not significantly different from
condition C (compression ratio of 0.5). This indicates that
the proposed method retains the same level of resolution as
condition C. The results of the U-test on the overall quality
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results showed that condition F (the proposed method) was
not significantly different from condition B (compression ratio
of 0.25) and condition C (compression ratio of 0.5). This
indicates that the proposed method maintains the same level
of overall quality as conditions B and C.

Condition B and C, which had the same overall quality,
were discussed in detail. Condition B had the same level of
smoothness, but the proposed method was evaluated higher
in terms of resolution. Condition C has the same level of
resolution, but the proposed method has a higher evaluation
in terms of smoothness. From these results, we believe that
the proposed method is better in the individual evaluations,
although the overall evaluation was at the same level.

VI. CONCLUSION

In this paper, we proposed a point cloud streaming method
for real-time 3D reconstruction of real-space objects such
as people and animals in virtual space in order to realize
the virtualization of tourism. We proposed a dynamic quality
control approach that adjusts the resolution and frame rate
of the point cloud according to the object’s motion, and
implemented and evaluated the proposed method. The results
of evaluation experiments confirmed that the proposed method
was superior in individual evaluations, although the overall
quality of the proposed method was equivalent to that of
conditions B and C that degrade FPS/resolution equally for all
body parts. Although these results suggest the practicality of a
new compression method for point cloud images, it is unlikely
that the system will be effective for all types of users, and a
more rigorous QoE evaluation that takes into account users’
preferences must be conducted. In addition to the display
of point clouds, the extent to which various interactions are
possible must also be considered.
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