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Abstract—3D applications such as VR and AR are attract-
ing increasing commercial attention, and point cloud video is
expected to be one of the most suitable representations for real-
time applications due to its simplicity and versatility. However,
point cloud data is large in size and difficult to stream in a
mobile network environment with limited bandwidth. Therefore,
a method for streaming point clouds with low bandwidth con-
sumption while maintaining the quality of the user experience is
needed. In this paper, we present a point cloud streaming method
of real-space objects such as humans and animals for real-time
3D reconstruction in VR space. The system uses a depth camera
to scan a human or animal, divides the point cloud into parts of
the body, and then controls the quality of the point cloud (i.e.,
resolution and frame rate) for each part in real-time according
to the object’s motion and context. This enables point cloud
streaming with limited resources (computational and network
resources) and maximizes the user’s quality of experience. We
exhibit a series of systems that enhance the user experience in
remote communication in realistic environments and scenarios
while maintaining interactivity between real-space objects and
remote users.

Index Terms—Real-time communication, 3D point cloud, QoE,
Streaming, VR

I. INTRODUCTION

The impact of COVID-19 has prompted many aspects of our
daily lives to go online. On the other hand, it is sometimes
difficult to go online in situations where the gap between the
real and virtual worlds is large. Tourism is an example of such
a situation, but if online access to such situations is achieved,
it will be possible to promote safe economic activities while
preventing infection and providing new options for our daily
life. For this reason, there is demand for a system that allows
users to interact with people and animals in a remote place
while moving freely within the place, even while participating
remotely, in situations such as tourism, where experience and
sensation in real space are important.

Many 2D video-mediated methods have been proposed for
such a system. For example, there is a virtual tour system that
extends an existing online conferencing system by applying
360-degree video, but the user’s degree of freedom is low,
and the experience is far from realistic [1]. Under these

circumstances, 3D video has been attracting attention in recent
years as a means of providing content that is closer to reality
in applications such as VR/AR. However, the large data size of
3D video makes it impractical to distribute the raw data in the
current infrastructure system. Therefore, an efficient streaming
method is required and has become a challenge [2].

This paper deals with point clouds, which are a simple and
versatile media for representing 3D images. There are many
studies and approaches for streaming point clouds, such as
encoding/decoding of point cloud data, tiling, and transmission
optimization using view angle prediction [3], [4]. However,
most of them focus on the compression of point clouds and
the prevention of unnecessary data transmission. There are also
some studies that evaluate the impact of these quality control
mechanisms on user QoE (Quality of Experience), but there
are not many of them [5]-[7].

In this paper, we propose an approach that extends point
cloud quality control mechanisms to context-aware and adap-
tive quality control of objects to achieve point cloud streaming
over limited resources while maintaining high user QoE.

II. SYSTEM OVERVIEW
A. Approach

To realize online tourism, it is necessary to convert real
space with various tourist objects into real-time data and
reconstruct it in virtual space. Still, it is difficult to acquire and
use all objects in real space in real-time due to computational
and network resources in mobile environments. Lee et al.
proposed an approach in which a portion of the real space
is cut out, and only the necessary objects are reflected in
real-time, while static data is used for the other objects [8].
We adopted this approach in our system, dividing the real
space into the objects that the remote participants wanted
to project and the surrounding objects that would serve as
their backgrounds. Fig. 1 shows this approach. The necessary
objects and the surrounding objects are called OOI (Object Of
Interest) and AO (Ambient Object), respectively.

In addition, we considered that using cameras and com-
munication infrastructure pre-installed at the site would be
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Fig. 1. Our approach in streaming real space objects to virtual space

inappropriate in terms of ubiquity and versatility. Since there
are countless tourist spots, the system must ultimately be
flexible enough to accommodate them. Therefore, we assumed
that volunteers would be present in the vicinity of the target
real space, and OOI point cloud scanning and transmission
would be conducted with their cooperation, using their mobile
terminals, such as smartphones and tablets. Under these con-
ditions, even when sending only OOI point clouds, there can
be delays that degrade the QoE due to limited communication
bandwidth and computational resources. Hence, we propose a
method to dynamically control the quality of the OOI point
cloud to keep the resources used under the limit. Unlike the
previous tiling approaches [6] which divide the point cloud
object evenly, the proposed method recognizes the object’s
attribute and divides the point cloud at the body part scale to
perform finer-grained quality control of the object to maximize
the user experience while reducing bandwidth consumption.

B. System Design

Based on the proposed approach, targeting tourism appli-
cation, we propose a system that enables remote and local
users to share space by scanning and transferring objects
in real space and reconstructing them in virtual space in
real-time, without requiring fixed infrastructure. As shown in
Fig. 1, a volunteer at a sightseeing spot performs scanning and
data transmission of local objects (OOI) in the real space in
real-time at the request of a remote user. The real space is
reconstructed in the remote user’s virtual space by using the
transmitted point cloud data of the local objects (OOI) together
with the background data (AO) prepared in advance, thereby
sharing the space of the tourist site is realized.

To reduce bandwidth consumption of the point cloud data
(O0I) handled by the system, we propose a dynamic quality
control based on body part movements and incorporate it in the
system. Based on the techniques used in video compression
standards such as H.265 for 2D video and tiling approaches
for 3D point clouds, we reduce the total amount of point cloud
data by dynamically varying the resolution and frame rate of
each body part according to context: high frame rate/low res-
olution when the object part is moving significantly, and low
frame rate/high resolution when the part is nearly stationary.
Although the absolute quality of the point cloud data (OOI)
is lower than the raw data after applying these processes,
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Fig. 2. System Data Flow

Fig. 3. In case of animals: masks are generated from animal pose estimation
results to get a point cloud

bandwidth consumption is optimized by controlling the quality
so as not to affect the user’s QoE as much as possible.

The following is a description of the prototype system we
developed to evaluate the feasibility of the proposed system.
Fig. 2 shows a data flow of the system. The system is built
on ROS and uses Unity for 3D reconstruction.

First, we explain how to obtain the AO and OOI to recon-
struct the real space in a virtual environment. First, we obtain
the AO by using tools such as a 3D scanning application that
utilizes LiDAR installed in the iPhone, or a camera that can
capture 360-degree images. In recent years, 3D scanning of
various locations has been progressing, so scanning of AO
objects may not be necessary in the future.

Next, we describe the actual method of acquiring OOI
point clouds for transmission and real-time reconstruction.
As mentioned above, we assume that mobile devices will be
used to acquire the OOI point clouds, as Apple’s release of
LiDAR sensors for the iPhone and iPad has made 3D scanning
easier for many people. The depth and texture of the OOI are
continuously acquired using a depth camera and treated as a
color point cloud. Our system uses Azure Kinect as well as
iPhone for evaluation.

After scanning an OOI object, quality control is dynamically
performed according to its context. First, as shown in Fig. 2,
pose estimation is performed on the 2D color video input from
the camera to segment body parts and track their movement.
For the pose estimation, a trt-pose estimation model is used
for human pose estimation [9], [10], and a model trained by
DeepLabCut is used for animals (deer) pose estimation [11],
[12], as shown in Fig. 3.

The quality of the point cloud is determined by the value
of the displacement of the corresponding body part. The
resolution of the point cloud is adjusted by resizing the original
input (color image, depth map: 720P) using nearest neighbor



TABLE I
SPECIFICATIONS OF POINT CLOUD QUALITY OUTPUT BY THE SYSTEM

Compression Rate

L Head Body Arms Legs All
(original:100%)
25% 0.28Mbps (13FPS)  2Mbps (13FPS)  2.3Mbps (14FPS)  1.5Mbps (14FPS) 6.1Mbps
50% 0.9Mbps (12FPS)  5.5Mbps (9FPS)  6.1Mbps (9FPS) 4.8Mbps (12FPS)  17.3Mbps
75% 1.8Mbps (9FPS) 6.5Mbps (SFPS)  6.4Mbps (SFPS)  5.6Mbps (6.5FPS)  20.2Mbps

completion (three steps: 25%, 50%, and 75%), and the frame
rate is switched by adjusting the transmission timing. This
process is performed for each body part. Table I shows the
bandwidth consumption of a sample human video sequence
when our system controls the quality. In this sample, the
bandwidth consumption (i.e., the maximum value) is 20.2
Mbps when all body parts are set to 75% quality, which
is within the possible transmission range with the existing
infrastructure.

The resulting point cloud data for each body part is then
sent to Unity as a ROS topic and reconstructed in 3D together
with the AO prepared in advance. To ensure water tightness
in the representation of the point cloud, the size of the points
is dynamically changed according to the quality of the point
cloud. The reconstructed tourist attraction space is presented
to the user through a VR-HMD. Our evaluation system is
designed to operate in a mobile environment using edge
devices and smartphones, but power consumption is not a
priority at this stage. We believe that the effective use of
GPUs and the optimization of software will reduce power
consumption.

III. SYSTEM DEMONSTRATION

In the demonstration, our prototype system will be set up
at the venue to show real-time quality control according to
the context of objects and the reconstructed real space after
the transmission in VR space. We will also show an example
without QoS control for comparison. We will also show a
scenario in which interaction with people and animals is
assumed.

The hardware configuration for the real-time processing
demonstration is shown in Fig. 4. Azure Kinect is connected
to NVIDIA Jetson to capture object scan data and perform the
dynamic quality control described above. The resulting point
cloud data of each body part is sent to another PC connected
via LAN, and 3D reconstruction/rendering is performed on a
VR headset (HTC-Vive) connected to that PC. Each of these
hardware devices mimics the mobile device in the proposed
system, and we have chosen these hardware configurations
for the purpose of system evaluation. With the above system
demonstration, we show that our system is feasible.
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Fig. 4. Hardware Configuration (for demonstration)
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