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Abstract—The crowdedness in various places in the city, such

as public transportation, restaurants, and public facilities, is

high-demand information for not only general people but also

municipalities and companies. However, it is not easy to acquire

comprehensive data because existing services of crowdedness

measurement separately collect and provide data in different

ways, although there are many services. This study aims to

establish the universal method of crowdedness estimation, which

is robust to various environments, by scanning BLE (Bluetooth

Low Energy) signals emitted from mobile devices owned by

general people. In this paper, we focus on restaurants and public

facilities with different types, conditions, and sizes and propose a

method of crowdedness estimation by fusing data obtained from

other numbers of BLE scanners depending on each space. As a

result, we confirmed that models trained with the same feature

set for each space show a practical performance. Additionally, we

explore the technical challenges when implementing the system

in a new space through detailed analysis.

Index Terms—Smart City, IoT, Crowdedness Estimation, Blue-

tooth Low Energy

I. INTRODUCTION

The level of crowdedness at various places in an urban
environment is one of the most anxious information for people
visiting and staying in a city. This demand covers a wide
range of places including public transportation, restaurants,
and public facilities. From the perspective of the whole society,
there is also a need to preserve cities safe and comfortable for
all by leveling congestion (i.e., avoiding excessive crowding in
public spaces). From both perspectives, it is essential to know
the level of crowdedness across various places.

In recent years, various congestion estimation methods
have been studied. For example, methods using GPS logs
from smartphones [1], [2], cameras and LiDAR [3]–[8],
smartphone-equipped sensors [9]–[11], and radio waves such
as Wi-Fi and BLE [12]–[20] have been proposed. Some of
these methods are commercialized as actual services. However,
existing congestion measurement services collect data and
provide information in different ways at different locations
and by other providers, making it difficult for users to obtain
crowdedness information across various places.

This study aims to establish a universal crowdedness es-
timation method independent of location and environment.

This study was supported in part by JST PRESTO under Grant No.
JPMJPR2039 and JST COI-NEXT under Grant No. JPMJPF2115.

To achieve this aim, we are exploring a technique based
on scanning BLE (Bluetooth Low Energy) signals, which
are emitted from smartphones and other electronic devices,
from the environmental side, and estimating the level of
crowdedness using the data of the received signals. In recent
years, people have tended to bring/wear/use multiple devices
such as smartphones, smartwatches, smart tags, and smart
locks. These devices communicate via BLE when exchanging
data in most cases. Hence, we can assume that people usually
turn on the BLE of their devices. So far, we have proposed
a method for estimating the number of passengers in a car
of public transportation, namely fixed-route buses, and trains,
and have confirmed the effectiveness of the method [15], [16].

In this paper, we focus on the crowdedness in closed spaces
such as restaurants and public facilities, which differs from
the target of our previous work. Compared with previous
work, people can enter and leave the space anytime for
indoor spaces. Hence, the problem of increasing the number
of addresses will be expected to arise. We created the in-
the-wild datasets for around 10 days in actual restaurants
and public facilities, which have different types, conditions,
and sizes (four locations in total) by using other numbers of
BLE scanners. Then, we built and evaluated a crowdedness
estimation model. The results showed that our model built for
each space using XGBoost Regressor performs with the mean
absolute error (MAE) of 4.89, the mean absolute percentage
error (MAPE) of 84.0%, and the root mean square error
(RMSE) of 6.34 in the worst case. These results indicate
that a certain crowdedness level can be estimated by using
a model with common features. Additionally, we explore the
technical challenges when implementing the system in a new
space through detailed analysis.

Our contribution is three-fold:

1) we proposed a BLE-based crowdedness estimation
method for public facilities and restaurants based on
fusing data from a different number of BLE scanners,

2) we evaluated the performance of the proposed method
with in-the-wild datasets in four public spaces which
have different types, conditions, and sizes, and

3) we provided a discussion of the technical challenges
when distributing the proposed method to a new space
through detailed analysis.



II. RELATED WORK

Research on crowdedness estimation in public spaces has
been tackled for various spaces, with various approaches.
Here, we explain them categorized into three groups: urban
spaces (i.e., wide areas of the city), mobility spaces (e.g.,
public transportation), and indoor/outdoor spaces (e.g., public
facilities, restaurants). In the following, a literature review of
related studies and the position of this study will be provided.

A. Crowdedness Estimation in Urban Spaces

Several telecommunication companies provide crowdedness
information of the city by using their customer’s connection
status. There are several services, Yahoo! Map Congestion
Radar [1] provided by Yahoo Japan and Kompreno [2] by
Agoop. These services collect and visualize location informa-
tion using GPS-equipped mobile devices such as smartphones,
with permission from users of applications provided by each
company. These services estimate the population at a certain
mesh, such as 125m or 250m square, but it is difficult to derive
the degree of crowdedness in a specific space.

In the research area of computer vision, estimating crowd-
edness and people flow by image analysis using cameras is
getting attention for a long time [3], [4]. Sindagi et al. [3]
proposed a method for estimating crowd density and count by
fusing multiple CNN components which incorporate global
and local contextual information of a crowd image. Liu et

al. [4] proposed an end-to-end trainable deep architecture,
named Context-Aware Network, that combines the features
obtained from multiple receptive field sizes for counting
people in crowded scenes.

B. Crowdedness Estimation in Mobility Spaces

The methods for estimating the crowdedness using cameras
installed inside a car of public transportation are proposed [5],
[6]. Song et al. [5] proposed a system for counting the number
of passengers using images from surveillance cameras. Al-
though these approaches directly recognize images of people
to be observed and thus enable estimation with relatively high
accuracy, the installation and analysis of cameras are likely to
create restrictions on the locations where they can be installed
from the viewpoint of social acceptability.

The methods using radio waves, such as Wi-Fi and BLE, are
also proposed [12]–[16]. Handte et al. [12] proposed a method
for estimating the number of passengers on routed busses
by counting the number of MAC addresses of passengers’
mobile devices that connect to the Wi-Fi access point equipped
with a bus car. Hydayat et al. [13] used GPS and Wi-
Fi scanner which detects MAC addresses of individual bus
passengers, for estimating the number of passengers. Maekawa
et al. [14] proposed a method based on scanning surrounding
Bluetooth signals by the passengers’ smartphones. In our
previous work [15], [16], we proposed a method for estimating
crowdedness on buses and trains by scanning BLE signals
emitted from passengers’ mobile devices using scanners in
the environment and building models with the signal reception
strength and its combinations.

C. Crowdedness Estimation in Indoor/Outdoor Spaces

There are studies and services using the technology of laser
imaging, detection, and ranging (LiDAR). Yamaguchi et al. [7]
proposed a LiDAR-based estimation method of individuals’
and human crowds’ locations and behavior, named Hitonavi.
SICK AG [8] provides a system for counting the number of
people who leave or enter an area by using 3D-LiDAR.

Also, the methods using several sensors equipped on mobile
devices are proposed [9]–[11]. Kannan et al. [9] proposed
participatory crowdedness estimation system where sound
signal emitted from a smartphone is received by another
user’s smartphone, and its acoustic characteristics is analyzed.
Nishimura et al. [10] proposed a method for estimating the
smoothness of pedestrian flows using accelerometer data and
ambient sound data collected by smartphones. Moustafa et

al. [11] proposed crowdedness estimation method in railway
stations using motion sensors of a smartphone for analyzing
passenger’s behavior and the microphone for capturing ambi-
ent sound characteristics.

The crowdedness estimation methods using Wi-Fi and BLE
are also studied [17]–[19]. Umeki et al. [17] used the BLE
emitter and receiver for counting people who pass through
between devices, by observing the RSSI fluctuation caused
by people. Weppner et al. [18] proposed the people den-
sity estimation method by using people’s mobile devices
for scanning neighbor BLE devices. Takahashi et al. [19]
combines an overhead camera and a Wi-Fi scanner that detects
probe requests from people’s mobile devices for estimating
crowdedness of bus stations.

D. Position of this study

As mentioned above, although there have been many studies
on crowdedness estimation, there has not been sufficient verifi-
cation of its applicability to different environments. This study
aims to establish a universal crowdedness estimation method
that can be applied across various public spaces, including
mobility and indoor/outdoor spaces. The purpose of this paper
is to evaluate and discuss whether crowdedness estimation is
feasible in indoor spaces, especially restaurants and public
facilities with different conditions, by applying the method
proposed by the authors previously [15], [16] which uses BLE
scanners placed in the environment.

III. DATA COLLECTION

A. Data collection system

For data collection, a device with the same functionality as
those used in previous studies by the authors [15], [16] will be
used (hereafter referred to as BLECE node). The setup of the
device and its installation example are shown in Figure 1. The
BLECE node operates based on the Raspberry Pi 4 Model B,
and BLE data acquired using a Bluetooth 4.0+EDR/LE Class
1 compatible USB adapter (BUFFALO, BSBT4D105BK) will
be uploaded to a cloud server via mobile network using LTE
compatible USB dongle (PIXELA, PIX-MT100).



TABLE I: Overview of target spaces and collected data

Space ID Type of space Capacity Shape of
space

# of BLECE
nodes

Label data
collection method

# of Label
data samples Data collection period *g

A *a Cafe 25 Square 1 SurvCam*e 556 Dec. 15, 2021 – Mar. 15, 2022
B *b Restaurant 50 Square 1 SurvCam*e 895 Dec. 23, 2021 – Mar. 15, 2022
C *c Restaurant 50 Rectangle 2 SurvCam*e 1398 Nov. 24, 2021 – Mar. 15, 2022
D *d City Library - L-shaped 3 Manual*f 316 Jan. 5, 2022 – Mar. 29, 2022

*a nijiiro*cafe (cafe & restaurant), https://nijiirocafe.com/ *b Tonmasa (Japanese pork cutlet restaurant), https://tonmasa.com/
*c Marukatsu Ikoma (Japanese pork cutlet restaurant), https://marukatsu912.com/ *d Ikoma City Library, https://lib.city.ikoma.lg.jp/
*e A surveillance camera is placed at entrance. *f A person in charge manually counts number of people.
*g In this paper, we used nondeletional and continuous 10 days data from data collection period for building models.

Raspberry Pi 4

BLE dongle
(BSBT4D105BK)

LTE dongle
(PIX-MT100)

(a) Setup of BLECE node (b) Installation example of BLECE node

Fig. 1: Overview of BLECE node

B. Overview of target spaces and collected data

In order to verify the possibility of estimating congestion in
public facilities and restaurants of different types, conditions,
and sizes, the fixed spaces shown in Table I were used for data
collection. This study was approved by the Ethical Review
Committee for Research Involving Human Subjects at Nara
Institute of Science and Technology (Approval No.: 2020-I-
16).

As shown in Table I, the target spaces A–D have different
business types and capacities, and shapes of space. The re-
quired number of BLECE nodes placed differs based on these
conditions. Figure 2 shows the shape and seating arrangement
of each space, as well as the placement of BLECE nodes
and entrance/exit cameras (the red ⌥ indicates the location
of BLECE nodes and the green N indicates the location of
surveillance cameras). For example, three BLECE nodes have
been placed in space D because it is a city library in front
of a main station and has a large area and the floor plan is
L-shaped. The data collected are timestamps, the Bluetooth
Device Address (hereinafter referred to as BD address) of each
scanned device, and the received signal strength (RSSI) of the
BLE. Since this study is targeting indoor spaces, information
specific to mobility spaces, such as location information and
route numbers, which have been utilized in previous stud-
ies [15], [16], are excluded. The BLE scan interval is 15
seconds (10 seconds for scanning and 5 seconds for sending
data and waiting time). To reduce installation costs, we tolerate
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Fig. 2: Floor plan of each target space, locations of BLECE
nodes and surveillance cameras, and photos of each target
space. Note that the scale and aspect ratio of space and the
location of tables and seats are not precise necessarily.



that each BLECE node does not synchronize the timing of
scanning BLE devices.

The label data of crowdedness, i.e., the number of people
staying in space at a certain moment, has been collected in
different ways depending on the requests from the managers
of each space. In spaces A, B, and C, a surveillance camera
(equivalent to the BLECE node configuration with the addition
of a Raspberry Pi Camera Module) was installed at the
entrances and exits of the spaces. Then, label data every
five minutes were acquired by performing posterior annotation
through counting manually. The difference in the number of
label data samples for each space is due to the different
opening hours. An example of the installation of a surveillance
camera and an example of the captured images are shown in
Figure 3. When installing the surveillance cameras, the data
collection has been conducted in consideration of the privacy
of general people, referring to the Camera Image Utilization
Guidebook Ver. 2.0 [21] formulated by the Ministry of Econ-
omy, Trade and Industry (METI), the Ministry of Internal
Affairs and Communications (MIC), and IoT Acceleration
Consortium (ITAC). Specifically, captured movies taken by
surveillance camera have been processed on the edge side so
that specific individuals cannot be identified, and the notice
of this experiment has been provided through the authors’
website 1 and posters put in each space during the data
collection periods (from one month before starting to ending
of the experiment). In space D, an investigator staying in the
space has patrolled periodically (about once every 15 minutes)
the space and collects the label data by visually counting the
number of people.

The data collection period is shown in Table I. Due to a
technical problem, there are several missing data, hence, in
the following sections, we used non-deletional and continuous
10 days data of each space (Spaces A, B, and C: January 19
to February 3, 2022; Space D: March 15 to March 29, 2022).

IV. CROWDEDNESS ESTIMATION MODEL

Using the datasets collected in the previous section, we
evaluate the feasibility of estimating crowdedness in various
indoor spaces.

A. Preprocessing

In this paper, the number of BLECE nodes differs due to the
different space sizes of target spaces A to D. Therefore, as a
preprocessing step, the data scanned by multiple BLECE nodes
are integrated and converted into a format that is independent
of the number of BLECE nodes. As mentioned above, the
BLECE nodes perform BLE scans with a measurement cycle
of 15 seconds, but the acquisition timing among the BLECE
nodes is asynchronous because the scans are initiated at
arbitrary timings.

The data integration procedure is as follows. First, the most
recent N samples before time t of the label data are obtained
for each BLECE node, and the pairs of data to be integrated

1https://www.iopt.jp/exp/blece-vol1

Example of captured movie

Fig. 3: Installation example of surveillance camera

are determined by considering the time-adjacent data as having
been obtained at the same time. Next, the union set (OR) of
the BD addresses in the data to be integrated will be taken. For
duplicate data that are caused by a device being scanned by
more than one BLECE node, the one with the highest RSSI
(stronger signal) is retained. This process is equivalent to a
virtual superposition to the same location of BLECE nodes
that are actually installed in different locations.

B. Feature extraction

BLE signals can not be scanned from all devices in the
space at any given time, but only when the device sends a
BLE advertising packet while the BLECE node is performing
a scan (10 seconds in the BLECE node configuration in this
paper, as mentioned above). Also, if the number of devices in
the space is large, scan omissions may occur. Therefore, it is
necessary to mitigate these effects by providing the model with
features based on multiple samples of data. On the other hand,
many of the devices currently in the markets incorporate an
algorithm that irregularly randomizes BD addresses to protect
the privacy of the owner. In other words, there is a risk of
an unnecessary increase in the number of BD addresses if the
samples used for calculating features of estimation models are
taken from too long time range. In mobility spaces such as
fixed-routed buses, people do not move in and out of spaces
while driving between bus stops. Our previous method utilize
this condition as a cue that the person was staying in the space.
In contrast, people can enter and leave the space at any time
for indoor spaces such as a restaurant, hence, the problem of
increasing the number of addresses will be expected to arise.

In order to construct a model that does not depend on
the location or environment while taking into account the
conditions specific to an indoor space, we employ additional
features derived by varying the range (time width) of past
sample acquisitions. Table II shows a list of features and their
details. Since it is supposed that the number and demographics
of visitors in restaurants and public facilities will be changed
depending on the time of day and the day of the week, we also
employed features of the hour (time of day) and is weekday
(weekday flag). In total, 42 features are extracted.



TABLE II: List of features

Feature name*a Details

all num T sec Total number of devices (BD addresses)
scanned in the past T seconds.

unique num T sec Total number of unique devices (BD ad-
dresses) scanned in the past T seconds.

unique ratio T sec Percentage of unique devices among
BD addresses scanned in the past T
seconds (ratio of unique number and
total number).

unique num T sec Sdb Total number of unique devices whose
RSSI is more than threshold S among
BD addresses scanned in the past T
seconds.

hour Time of day (0–23)
is weekday Weekday flag

(weekday: 1, weekend/holiday: 0)

*a T indicates the time range (15, 30, 45, 60 seconds) over which past
samples are referenced, and S indicates the threshold (�60 to �90 dB, in
5 dB increments) when referring to samples with high RSSI values.

C. Evaluation and results

We built a crowdedness estimation model using the ex-
tracted features for each space and evaluated them. Three types
of machine learning models were used: SVR (Support Vector
Regressor, RBF kernel), RFR (Random Forest Regressor),
and XGBR (XGBoost Regressor). The hyperparameters of
each model were optimized by GridSearchCV in scikit-learn.
To evaluate the models, leave-one-day-out cross-validation
was used, and MAE (Mean Absolute Error), MAPE (Mean
Absolute Percentage Error), and RMSE (Root Mean Squared
Error) were used as evaluation indices.

The evaluation results are shown in Table III. Overall, the
model constructed by XGBR showed relatively high perfor-
mance. For Space A, the range of the number of people visiting
this space is too small within the data set collected in this paper
(maximum label data was 12 people), hence, we will exclude
Space A in the subsequent analysis and discussion.

The results of the model constructed by XGBR for spaces
B, C, and D (scatter plots of the label data and estimated
data) are shown in Figure 4. The scatter plots show that each
estimation model captures the general trend in the crowdedness
of the space. Also, we have confirmed the performance of
the models did not differ significantly for different numbers
of BLECE nodes. In Spaces B and C, both cases show large
errors in MAPE of 51.9% and 58.1%, respectively. This might
be due to the fact that there were many samples with a small
number of people (less than 10 people) in the data set, as can
be seen from Figure 4a and Figure 4b.

Next, the feature importance (top 20 features) of the models
constructed by XGBR for the spaces B, C, and D are shown
in Figure 5a, 5b, and 5c, respectively. The results show that
the most promising BLE-related features are the total number
of BD addresses in the most recent sample (all num 15sec),
the percentage of unique BD addresses in a wide time range
(unique ratio T sec, range of T = 30 � 60sec), and the

TABLE III: Evaluation results of crowdedness estimation
model for each space

Space ID Model MAE MAPE RMSE
(# of people) (%) (# of people)

A
SVR 1.36 61.1 1.97
RFR 1.44 71.2 2.01

XGBR 1.49 69.6 2.06

B
SVR 3.97 91.0 5.40
RFR 3.75 90.0 5.00

XGBR 3.61 84.0 4.59

C
SVR 4.51 80.1 6.15
RFR 4.09 77.5 5.59

XGBR 4.04 70.9 5.62

D
SVR 5.47 27.5 6.99
RFR 4.91 25.5 6.33

XGBR 4.89 24.0 6.34

number of uniques BD addresses with strong signal strength
in a narrow time range (unique num T sec Sdb, range of
T = 15�30sec and S > �70db). For the total number of BD
addresses and the number of unique BD addresses, the data in
the short term and/or data with strong signal strength tend to
contribute effectively because they directly and roughly reflect
the number of people. In contrast, for the percentage of unique
BD addresses, the data in the long term tend to contribute
effectively because they could explain how fluid the location
is. These indicate that it is effective to provide features with
different time ranges which are newly employed in this paper.
Also, the time of day was shown to be a strong cue.

V. CONCLUSION

This study aims to realize a method for estimating the
crowdedness in various spaces including mobility spaces and
indoor/outdoor spaces based on the BLE signals emitted from
mobile devices such as smartphones owned by general people.
In this paper, we build and evaluate crowdedness estimation
models for four indoor spaces (restaurants and public facil-
ities) with different types, conditions, and space sizes. As
a result, it was shown that the models built for each space
using common features achieve a certain level of crowdedness
estimation performance regardless of the different numbers of
BLECE nodes. However, we also confirmed the performance
of congestion estimation is not yet enough when the number
of people in the space is less than 10 people. In the future,
we will explore more effective data integration methods and
feature extraction methods to improve performance and realize
a universal crowdedness estimation method.
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