
Smatable: A System to Transform Furniture into
Interface using Vibration Sensor

Makoto Yoshida1, Tomokazu Matsui1, Tokimune Ishiyama1, Manato Fujimoto2, Hirohiko Suwa1, Keiichi Yasumoto1
1 Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan

E-mail: {yoshida.makoto.yn3, matsui.tomokazu.mo4, ishiyama.tokimune.io3, h-suwa, yasumoto}@is.naist.jp
2 Osaka Metropolitan University, Osaka, Osaka 558-8585, Japan

E-mail: manato@omu.ac.jp

Abstract—Recently, with the spread of smart houses, the
smartness of housing equipment and home appliances has pro-
gressed, and the functionality and usability of interfaces between
people and equipment and between people and home appliances
have become important factors. Currently, the main interfaces
are remote controls, smartphone applications, and even voice
recognition. Furthermore, research is also being conducted on
interfaces that can be operated without having the device at
hand using cameras and radio waves. However, special equipment
must be installed for operation, and compatibility with room
design has become an issue. In this research, we proposed a
system to transform existing furniture into an interface rather
than providing a new interface. The proposed system focused on
vibration sensors that are small, inexpensive, and can be attached
to existing furniture or hidden from view. To evaluate the pro-
posed system, an experiment was conducted to transform existing
furniture into an interface for swiping by simply attaching the
vibration sensor to the existing furniture. Specifically, the system
attaches four vibration sensors with synchronized output signals
to a table and uses a CNN to learn the vibration data obtained
from the sensors to predict the direction of the swipe. As a result,
when the table and person swiping were fixed, the system could
predict the swipe with an accuracy of over 0.86.

Index Terms—Interfaces, Vibration sensors, Deep learning

I. INTRODUCTION

Recently, there has been an active trend toward the use
of smart home equipment and home appliances. A factor
that determines the usability of smart home appliances is the
”interface between humans and smart home appliances.” In
particular, the interface of smart home appliances used in daily
life must be easy to use, simple to use, fun to use, and improve
the quality of life. The interaction provided by these interfaces
is a key elemental technology that determines whether smart
appliances will be integrated into our daily lives. Currently,
the mainstream interfaces between smart home appliances
and humans include remote controls, portable devices such
as smartphone applications, and voice recognition. Although
voice recognition has the advantage of being non-contact, it is
command-based, with one command for each action, and when
repeated operations are performed, such as turning pages, the
user must also repeat the pronunciation, which can be stressful.
In addition, efforts are being made to embed highly functioned
interfaces in home appliances themselves, and products such
as electrostatic touch sensors and touch panels that function as

interfaces are being developed. Embedding interface functions
have the advantage of being intuitive and natural. However,
home appliances and furniture are specially designed for this
purpose, and the scale becomes large, resulting in costs other
than for the original function and design. On the other hand,
non-contact interfaces are not only systems that use voice
recognition, but also those that use gestures such as fingers
and arms. For example, there is an interface that uses a motion
sensor to operate the CG on the screen when arranging three-
dimensional objects in the initial stage of work, such as design,
although it is not for domestic use [1].

This method requires a grasping motion in space, so a
monitor is necessary, and the motion sensor must be installed
so that the hand can be seen, which limits the design of
furniture when applied in the home. Additionally, there are
camera-based systems that use special gloves to detect human
hand movements [2], and systems that use an infrared light
on the palm to capture images with an infrared camera
to recognize arm and hand movements and input data [3].
Moreover, a camera that captures the movement of a hand on
a GUI projected by a projector and inputs commands have
been studied [4], [5].

Since cameras can easily obtain a large amount of informa-
tion and identify moving objects, they can be used not only
for gesture recognition as an interface but also for various
applications such as human behavior recognition and anomaly
detection in the home. However, the amount of information
handled is large, and there are concerns about privacy invasion,
especially in the home. Therefore, the camera’s presence in
residence causes psychological stress. Recently, methods using
radio waves and vibration sensors have been proposed as
moving object recognition methods less likely to infringe on
privacy than cameras [6]–[14]. Table 1 shows a comparison
of various sensors that can detect human movements. Vibra-
tion sensors, in particular, have the advantage of being easy
to install, cost-effective, and have little concern about the
infringement of privacy. Additionally, it is characterized by
its concealability, which allows the sensor to be placed in an
invisible position, and is a great advantage when considering
its use as an interface for devices used in the home, where
design is important.

In this research, we propose a method that uses this feature



TABLE I
SENSING METHOD COMPARISON TABLE

Ease of Small Abundance Lo light Sensor cost
privacy installation of covertness

considerations size information

Camera × × ✓ × × ×
Microphone × ✓ - ✓ - ✓
Laser - × - ✓ × ×
Infrared ✓ × - ✓ - ×
Radio wave ✓ × × ✓ × -
Vibration ✓ ✓ - ✓ ✓ ✓

of vibration sensors to connect smart home appliances and
users simply by simply attaching sensors without changing
the design of existing furniture and use it as a furniture
interface that blends into our lives. In this paper, we took a
table as one piece of furniture and examined the detection
of swiping motions on the table using a vibration sensor
as a basic function for making it an interface. Section II
of this paper introduces existing studies and issues related
to this research. Section III describes the proposed system
configuration, Section IV discusses the signals output from the
vibration sensor, Section V describes the swipe identification
method using CNN, its evaluation results and discussion, and
finally, Section VI provides a summary and future work.

II. RELATED WORK

This section introduces several existing studies related to
this research, summarizes their problems, and describes the
issues to be addressed in this research and the proposed
methodology.

A. Tangible user interface

Patten et al. [13] studied and proposed a system called
“Tangible User Interface.” This system uses an object on a
table to which a knob called a sensor puck is attached. The
object is equipped with a coil, which is used to make an
electromagnetic coupling with the table to track the object’s
state and position. In addition, an image reflecting the state
and position of the knob is projected onto the table by a
projector, allowing for simultaneous input and feedback from
the user. This research is excellent in that it recognizes the
user’s manipulation of the object and reflects that feedback
as a projected image, thus providing a direct manipulation of
the object and a more intuitive interface. However, it requires
dedicated equipment for both the sensor pack on the table and
the table itself. Therefore, it is not possible to use the interface
in the way we want to achieve it, which is to simply attach a
simple sensor to an existing piece of furniture.

B. Research on gesture recognition using camera indoors

In recent years, some research has been conducted using
camera-based gesture recognition as an interface. Goto et
al. [4] used a camera with a pan-tilt function and a projector
to project GUI images on a table, wall, or other desired
location in the home. By implementing a combination of
background subtraction and skin color extraction from video,
hand gestures are detected as if they were touch panels.

Simone et al. [5] have constructed an interface by combining
a camera, a projector, and an infrared laser. This interface
not only recognizes human actions on the projected image
but also performs object recognition. In the example of the
use case of cooking support, the projector projects a cooking
recipe and also realizes recognition of food ingredients. In
addition, multi-touch is also realized using infrared lasers.
However, these methods are not only large in scale but also
require the installation of a camera in a position where the
projected surface and hands are within the angle of view,
and nothing obstructs the camera so that the camera can
recognize the projected GUI and hands, which limits the
positioning relationship with furniture and other objects. In
addition, the camera-based method not only raises privacy
concerns by installing a camera inside a room but also creates
psychological concerns even when the camera is not in use,
since the camera is installed in a position where it is easily
visible to the user due to the angle of view. Furthermore, from
a practical standpoint, the amount of light stored in the image
sensor is reduced in many cases where the lighting in the
home is darkened, resulting in blurred images and difficulty
in increasing the frame rate, which increases the difficulty of
identifying moving objects. In terms of operation, the amount
of information handled at the time of data acquisition is large,
making pre-processing computationally expensive.

C. Recognition of handwritten input using acoustic features

Other interfaces use acoustic signals to detect human writing
actions. There is research on a pen interface that uses a
microphone attached to the body of a pen to pick up acoustic
signals generated on a desk during writing and recognize the
characters in printed type [15], and research on a pen interface
that uses a microphone to record writing sounds generated near
a table from a distance, and combines them with character and
language models estimated from the writing sound data [16],
and others. These methods are superior in terms of cost and
have a small installation scale, but they are easily affected by
ambient noise, and there is a concern that the recognition rate
may decrease under noise conditions.

D. Gesture recognition using electromagnetic waves

Kim et al. [14] used millimeter waves to perform gesture
recognition by machine learning using the amplitude variation
of the peak component of the impulse response and decision
trees. This method is superior in that it does not take privacy
information. However, it requires the installation of radio wave
absorbers and horn antennas to suppress the effects of reflected
electromagnetic waves, which is large-scale. In addition, there
is concern that the use of metal furniture may change the
propagation of radio waves.

E. Positioning of this study with respect to existing research
issues

When considering the method of moving object recogni-
tion used as an interface in the home, infrared rays, lasers,
electromagnetic waves, and vibration sensors are candidates,
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except for cameras and microphones due to privacy concerns.
However, infrared rays and lasers require sensors to be placed
in a position with good visibility, which limits the degree
of freedom in arranging furniture. In addition, since electro-
magnetic waves are reflected, furniture using electromagnetic
waves is easily affected by the surrounding environment, and
there is a problem that the materials used for furniture are
limited. On the other hand, the vibration sensor does not
provide as rich information as the camera, so privacy can
be preserved. However, it has the disadvantage that it cannot
obtain information when it is stationary, but it can be said that
it is suitable for detecting moving objects because it contains
a lot of information about moving objects. In addition, it has
the advantage of being low cost and easy to arrange in large
numbers.

In addition, it has the greatest feature that it can be used
even when the sensor is hidden as long as it is in a place
where vibration is transmitted, which is a great advantage in
sensing at home where design is important. From the above,
we believe that vibration sensors are suitable as interface
devices for smart homes. In this research, we will develop and
propose a vibration sensor that can be used as an interface with
furniture just by attaching it without changing the design or
material of the furniture. In this research, we used CNN, which
is often used in speech recognition and image recognition.
The reason is that the band of the signal recorded by the
vibration generated when swiping the table is the voice band,
and it was confirmed that the spectrogram clearly shows the
characteristics of the swipe. The swipe detection range was
set to 4 directions on 2 axes, and detection was limited to
the axial direction only. Specifically, we aimed to detect four
actions: swiping up (UP), swiping down (DOWN), swiping
left (LEFT), and swiping right (RIGHT).

III. SENSOR SYSTEM

A. Sensor structure

Fig. 1 shows the structure and installation of the table
and sensors used to detect swipes. Two pairs of vibration
sensors are aligned in a straight line on the back of the table
and mounted in orthogonal directions in the X and Y axes,
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respectively, for a total of four sensors to capture the vibration
that occurs when a finger swipes across the table. The sensor
is attached to the back of the table so that the sensor cannot be
seen from the table so as not to impair the design. In previous
studies, when fabricating vibration sensors, a weight of a
certain mass was placed on top of the piezoelectric element to
increase the sensitivity of the electrical signal generated when
the object is subjected to acceleration. However, weight cannot
be used when the piezoelectric element is mounted on the back
side of a table. As shown in Fig. 1, the piezoelectric element
is placed on a steel-covered plate attached to the table side
with double-sided tape and fixed with a magnet, thus utilizing
magnetic force as a substitute for the gravity obtained with a
weight.

B. Sensor system block

Fig. 2 shows a block diagram of the developed sensor
system. Since there are four sensors in total, each signal is
amplified by a dedicated amplifier and recorded synchronously
by a multi-channel recorder.

C. Sensor amplifier

Fig. 3 shows the 4-channel amplifier system fabricated.
Vibration signals are known to have a very large dynamic
range, i.e., the difference between strong and weak signals.
The amplifiers were designed to have rail-to-rail outputs using
both power supplies to ensure a dynamic range. The amplifier
circuit and substrate are designed to reduce noise and ensure
the signal-to-noise ratio by using parallel synthesis for the
input stage amplifier.
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Fig. 4. Time axis data of vibration sensor output during the swipe

In addition, the amplifier boards for the X-axis and the
Y-axis are housed in the housing as a set of two channels.
Additionally, it has a shield structure using an aluminum case
to avoid the influence of radiation noise from electric power
lines and other electronic devices when installed indoors.

Furthermore, the power supply has a floating power supply
structure using batteries, and separate power supplies are in-
stalled for the X-axis and the Y-axis, thereby avoiding induced
noise from power lines. These systems are for experiments and
are large, but they can be made smaller by using chip parts
and laminated substrates. The sample rate of data acquisition
is 44.1 kHz, and quantization is performed with 16Bit PCM.
The data to be recorded is recorded as one file for every two
channels and recorded as two stereo WAV files, one each for
CH1 and CH2 for the X-axis and CH3 and CH4 for the Y-axis.

IV. ANALYSIS OF VIBRATION SENSOR SIGNAL DURING
SWIPING

A. Confirmation of time domain waveform of vibration signal

Fig. 4 shows the time-axis waveforms obtained from the
vibration sensor by swiping a finger on the table. The four
channels of the sensor signal, CH1, CH2, CH3, and CH4, are
synchronized in time. In Fig. 4, (a) is the time axis waveform
when swiping to the right from the left, (b) is the time axis
waveform when swiping to the left from the right, (c) is the
time axis waveform when swiping down from the top, and (d)
is the time axis waveform when swiping up from the bottom.
Swipes were made near the center of the table.

At first, we thought that the signals of the sensor near the
start position of the swipe and the sensor near the end position
of the swipe would change as follows. We expected that the
amplitude of the sensor near the start position would gradually
decrease as the swiping finger moved, and conversely, the
signal from the sensor near the end position would grad-
ually increase. Contrary to this, we could not find a clear
increase/decrease change in the amplitude of the time domain
waveforms on each axis.

B. Transmission characteristics of vibration in table

To investigate the relationship between the distance from
the vibration source and the output of the vibration sensor
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TABLE II
EXCITATION FREQUENCY.

Frequency[Hz]
100 200 400 1K 2k 4k 8K 10K

in more detail, we conducted the following experiment. As
shown in Fig. 5, the table surface was divided into sections of
130 mm in length and width at equal intervals, and 48 points
of intersection were vibrated by a vibrator at constant power,
one at a time, with sine waves of 8 different frequencies as
shown in Table 2, and the sensor output level was recorded.

For the data collected at 48 locations, the distance was
calculated from the relationship between the excitation posi-
tion and the sensor position, and the relationship between the
distance and the sensor output level was checked. Initially, we
thought that the sensor output level was inversely proportional
to the distance. Fig. 6 shows the results for CH4 excitation at
400 Hz. Contrary to expectations, the amplitude level showed
no inversely proportional relationship to the distance between
the sensor and the exciter. This indicates that it is difficult to
detect the direction of the hand at the time of swiping only
by the amplitude level.

C. Auditory evaluation of vibration sensor signals

Since the recorded vibration data was recorded in PCM
and its frequency range is the same as the audible range, we
confirmed the vibration signal by hearing it as shown in Fig. 7.
We confirmed the vibration signals by placing CH1 on the left
ear and CH2 on the right ear on the X-axis, and were able to
recognize them as sound and clearly feel the movement of the
fingers. Similarly, when the vibration signal was checked by
placing CH3 in the left ear and CH4 in the right ear on the
Y-axis, the movement of the fingers could be clearly felt.

D. Confirmation by spectrogram of vibration signal

From the results of the auditory confirmation experiment
in section IV-C, we thought that when the vibration signal
was converted to sound, humans would be able to perceive
movement as changes in pitch and tone. Therefore, in this
research, instead of using the amplitude information as it
is, we considered performing movement detection using the
spectrogram as a feature amount. Fig. 8 shows the spectrogram
calculated using FFT (Fast Fourier Transform) after recording



fig7 10

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

0.0 20.0 40.0 60.0 80.0 100.0

Se
ns

or
 o

ut
pu

t 
R

M
S 

[d
BF

s]

Distance[cm]

Distance between vibration source and sensor VS sensor output【CH4】

400Hz

Fig.6

Distance between vibration source and sensor VS sensor output
【CH4】

Fig. 6. Distance between vibration source and sensor VS sensor output[CH4]

fig8 11

The recorded vibration signals can be heard by humans. This is because 
signals recorded at a sampling rate of 44.1kHz are in the audible range.

When the vibration data of the opposing sensors (CH1, CH2 and CH3, 
CH4) corresponding to the X and Y axes were played back as sound, I 
could feel the movement of the hand swiping on the table.

CH1 CH2

CH3

CH4

Fig.9

Fig. 7. Auditory evaluation of vibration sensor signals

the signals of CH1, CH2, CH3, and CH4 in synchronization.
Swipes were made near the center of the table.

In Fig. 8, (a) is swiped from left to right (hereafter re-
ferred to as RIGHT), (b) is when swiped from right to left
(hereafter referred to as LEFT), and (c) is swiped from top
to bottom (hereinafter referred to as DOWN), and finally
(d) is the spectrogram when swiping from the bottom to the
top (hereinafter referred to as UP). The obtained spectrogram
shows that, for horizontal swipes, the signal from the sensor
at the starting point of the swipe shows a faint upward-sloping
striped pattern, and the sensor at the ending point shows a faint
downward-sloping striped pattern. On the other hand, for the
data in the vertical direction, the change in the density of the
striped pattern was small, and it was difficult to distinguish
visually, but it was confirmed that a similar relationship was
maintained in some data.

These stripes are thought to correspond to changes in the
fundamentals and harmonics, i.e., what is perceived by the
auditory sense as changes in pitch and timbre. Based on
the above, we thought of using a pattern that combines four
spectrograms as input and identifying the swipe direction using
the temporal changes in timbre and pitch as features. Since
temporal changes in pitch and timbre are expressed as changes
in the pattern when the spectrogram is captured as an image,
we investigated classification using CNN (Convolutional Neu-
ral Network), which is used in image recognition.
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Fig. 8. Spectrogram of the signal at the swipe
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V. SWIPE DIRECTION ESTIMATION USING CNN

A. Data acquisition and preprocessing

When we checked the signals obtained from the four sensors
in section IV-D as a spectrogram, we found that a characteristic
pattern appeared (Fig. 8), and furthermore, the pattern differed
depending on the direction of swiping. Therefore, we decided
to combine the four spectrograms into one, as shown below,
and treat them as a single image-like matrix connected to the
swipe direction. Fig. 9 shows the details of the preprocessing
performed before deep learning. Data is cut for each swiping
direction (UP, DOWN, LEFT, RIGHT) for two seconds, which
contains one swipe, and converted into a spectrogram by STFT
(window function is Han window, frame size is 1000 samples).
Since signal data is obtained synchronously from the 4-channel
sensors, the same process is performed for each of the four
channels, and then the resulting four matrices for the four
channels are combined as a single matrix, labeled and stored
with the swiped direction (UP, DOWN, LEFT, RIGHT).

B. Acquisition of training and validation data

Data acquisition for training and validation consisted of
10 swipes per session for each swipe direction (up, down,
left, right), and nine sessions of data were acquired in each
direction. Swipes were made near the center of the table. In
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addition, when he checked the signal level of the obtained 2-
second swipe data, it was lower than expected, so he uniformly
performed a numerical amplification (multiplication) of six
times (15.6 dB).

C. CNN layer configuration

As mentioned above, recognizing patterns in a spectrogram
grouped into a single matrix is similar to image recognition,
so in this research, we used CNN, which is often used in
image recognition, for deep learning. Fig. 10 shows the layer
structure of the CNN used. The obtained matrix is used as
an input and trained by a CNN consisting of 2 convolution
layers with 64 filters, a pooling layer, 2 dropout layers, and
2 fully connected layers. This configuration was created with
reference to the configuration used for character discrimina-
tion. Specifically, the array size of the input layer is an array
of (1002, 356) obtained by synthesizing four channels into one
two-dimensional array using the STFT result of one channel.

Therefore, the number of arrays was adjusted accordingly.
The convolution size of the subsequent convolution layer is
(3 × 3), and the activation function is ReLU. The number
of convolution filters is 64, and two convolution layers are
connected. The pooling layer provided after the convolutional
layer has a (2 × 2) configuration with 64 layers. After that,
one dropout layer with a dropout ratio of 0.25 is added,
followed by flattening through a fully connected layer, again
with a dropout ratio of 0.25, followed by flattening through a
fully connected layer, and finally four outputs corresponding
to the directions (UP, DOWN, LEFT, RIGHT) with softmax
functions outputs.

D. Learning methods

As shown in Fig. 11, 6 of the 9 sessions of swipe data
with 10 swipes per session obtained in section 5.2 were
used for training, and the remaining 3 sessions were used as
validation data to perform 3-Fold cross-validation and confirm
recognition accuracy. In the learning using CNN, the batch
size was set to 10, and the learning model was constructed by
performing 24 epochs of learning. In constructing the learning
model, the loss function is set to “categorical crossentropy”
and the optimization algorithm “adm” is used. Fig. 12 shows
the learning curve and loss curve for one of the 3Folds, as
well as the confusion matrix resulting from predicting a 4-way
swipe of the data for validation using the resulting training
model.
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E. Comparison by person and by table

Next, in order to confirm whether the swipe direction
can be identified even with different tables, as shown in
Fig. 13(a), we prepared two additional tables and conducted
a similar experiment. The table on which the experiment was
first performed was A, and the added tables were B and C,
respectively. Of the two tables, Table C chose a low table that
was completely different from the other two. All the people
performing the swipe motion were the same in the experiment,
and the accuracy was confirmed by 3-fold cross-validation as
in the experiment described earlier. The results are shown
in Table 3. In all cases, the accuracy was higher than 0.9,
although there was a slight decrease in accuracy in some cases
when the table was changed.

Next, as shown in Fig 13(b), verification was performed
when different people swiped the same table. As in the
previous experiment, the results confirmed for each person
by three-part cross-validation showed that the lowest accuracy
was 0.86.

F. Accuracy in models trained on other tables and participants

As shown in Fig. 14 (a), we created a learning model using
swipe data from two of the three tables that were not subject to
estimation, and conducted experiments to estimate the swipe
direction for the remaining one table. Fig. 14 (b), shows the
results of an experiment in which a learning model is created
using data from two non-targets and tested with the remaining
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Fig. 13. Evaluation using three types of tables and three participants

TABLE III
ACCURACY AND LOSS WHEN USING A PER-PERSON, PER-TABLE

LEARNING MODEL(3-FOLD CROSS-VALIDATION)

Accuracy Loss Fixed conditions
Table A 0.98 0.05 Person A
Table B 0.94 0.32 Person A
Table C 0.90 0.60 Person A
Person A 0.98 0.04 Table A
Person B 0.86 0.61 Table A
Person C 0.92 0.47 Table A

one. The result is as shown in Table 4, and the result is a large
drop in accuracy.

G. Verification of accuracy by adding data for one session of
the relevant table and participants

In order to consider how to improve the accuracy, we created
a learning model by adding the data from the table that tries
to predict the swipe direction for one session to the learning
data as shown in Fig. 15(a), and predicted the swipe direction.
This is a study with a view to making it practically usable as
an interface by adding a little unknown data.

Additionally, as shown in Fig. 15(b), we added the data of
the person whose swipe direction is to be guessed for one
session to the learning data, created the learning model again,
and then Predicted the swipe direction. Results are shown
in Table 5. In a per-participant experiment, all participants
improved to an accuracy of 0.70 or better. In the table-by-
table experiment, Table C, which is a very different type of
table, showed only limited improvement in accuracy, but all
other tables improved to 0.71 or better.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, on a table, which is a familiar piece of
furniture in the home, the identification of human swipe
operations was performed using only the vibration transmitted
to the table without using a camera. The system can be
implemented simply by attaching a simple vibration sensor,
and there is a possibility that it can be used as an instant
interface anywhere, not just on the table.

The prediction was performed using a CNN, inputting
changes in the vibration signals received from four of his
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Fig. 14. Evaluation of learning models using data from different tables and
participants

TABLE IV
ACCURACY AND LOSS OF THE TRAINING MODEL USING DATA EXCLUDING

TABLES AND PERSONS TO BE PREDICTED

Accuracy loss Training data
Table A 0.56 1.30 Table B,C
Table B 0.25 2.59 Table A,C
Table C 0.22 5.03 Table B,A
Person A 0.50 2.89 Person B,C
Person B 0.39 3.95 Person A,C
Person C 0.67 0.88 Person A,B

proprietary synchronized synchronous vibration sensors as
combinations of patterns obtained from the spectrogram. In
the experiment, three persons each swiped a table for multiple
sessions, and the table vibration was recorded using four
vibration sensors. The recorded data was used to determine
the direction of the swipe, and when the vibration data of
only the person who swiped the table was used for 9 sessions
and confirmed by 3-fold cross-validation, the classification
accuracy was higher than 0.86

Additionally, we created a learning model using 6 sessions
of swipe data, 3 sessions each for the other 2 persons,
excluding the person who swiped, and determined the swipe
direction for the 3 sessions, but the accuracy decreased to
less than 0.39. When data from the person who swiped was
added for one session, the accuracy improved, and predicts
were made with an accuracy of more than 0.71.

Similarly, We created training data using 6 sessions out of
9 sessions of vibration data on the table to be predicted and
confirmed the prediction of the swipe direction for the remain-
ing 3 sessions of vibration data by 3-fold cross-validation. As
a result, although the accuracy varied depending on the table,
we were able to make predictions with high accuracy of 0.90
or more.

In addition, we created a learning model using 6 sessions of
swipe data collected from two other tables, excluding the table
for which we wanted to determine the swipe direction. Using
this learning model, the swipe direction was determined for
3 sessions of data in the swipe direction determination target
table. As a result, the accuracy decreased to 0.22 or less.

Therefore, when we added the data of the table swiped for
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TABLE V
ACCURACY AND LOSS WHEN ADDED TO ONE SESSION TRAINING DATA

Accuracy loss Training data
Table A 0.73 0.78 Table B,C +A(1Session)
Table B 0.90 0.36 Table A,C +B(1Session)
Table C 0.43 4.66 Table B,A +C(1Session)
Person A 0.75 1.85 Person B,C +A(1Session)
Person B 0.72 1.30 Person A,C +B(1Session)
Person C 0.76 0.73 Person A,B +C(1Session)

only one session, the accuracy improved for the two tables,
excluding the table with a significantly different shape, and it
became possible to estimate with an accuracy of 0.73 or more.

In this paper, we examined the possibility of using vibration
data during swiping as an interface, but the swipe position was
limited to the inside of the square connecting the four sensors,
and the swipe was performed roughly in the middle. Therefore,
it is necessary to verify the accuracy when there is a large bias
in the swipe position. Additionally, at this time, the collection
of training data for each table and each person operating the
table is necessary for stable use, which poses a challenge.

We plan to continue the following efforts so that it can be
used as an interface with only simple learning in the future. In
this system, we have concluded that replaying the vibrations
as sound could clearly sense movement with human hearing,
so we think that improving the deep learning architecture will
likely improve the detection accuracy. For this reason, we will
consider acquiring generalizability in the CNN layer structure
by reviewing the layer structure and architecture, such as
synthesizing after performing convolution independently for
each channel. For practical use as an interface, we will plan
to use ensemble learning to improve accuracy and support
retries in cases of low confidence.
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